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Schools of Statistics

Two Major Schools

� Frequentist:— significance, power, p-values, hypothesis testing

� Bayesian: — subjective probability, prior & posterior
distributions; inference, decision theory;
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Additional Minor Schools

� Neyman-Pearson: Neyman, Lehmann — significance, power,
rejection region, decision between hypotheses.

� Likelihood: Edwards, Royall — likelihood, support, Bayes factor.

� Fisher: Fisher, Mayo — rejection of hypotheses, probabilistic
falsification;

� Fiducial: Fisher — Posterior probabilities without priors.



Interpretations of Probability

Probability has had multiple interpretations:

� Mathematical — Measure theory, not interpreted;

� Frequency — Relative frequencies of events, infinite sequences;

� Propensity — Causal, single case, relative frequency;

� Logical — Partial entailment among propositions;

� Classical — Equally possible alternatives;

� Subjective — Logic of uncertain beliefs, opinions, judgements;

� Subjective — Logic of uncertain beliefs, opinions, judgements;



Interpretations of Probability

Probability has had multiple interpretations:

� Mathematical — Measure theory, not interpreted;

� Frequency — Relative frequencies of events, infinite sequences;

� Propensity — Causal, single case, relative frequency;

� Logical — Partial entailment among propositions;

� Classical — Equally possible alternatives;

� Subjective — Logic of uncertain beliefs, opinions, judgements;

� Subjective — Logic of uncertain beliefs, opinions, judgements;



Interpretations of Probability

Probability has had multiple interpretations:

� Mathematical — Measure theory, not interpreted;

� Frequency — Relative frequencies of events, infinite sequences;

� Propensity — Causal, single case, relative frequency;

� Logical — Partial entailment among propositions;

� Classical — Equally possible alternatives;

� Subjective — Logic of uncertain beliefs, opinions, judgements;

� Subjective — Logic of uncertain beliefs, opinions, judgements;



Interpretations of Probability

Probability has had multiple interpretations:

� Mathematical — Measure theory, not interpreted;

� Frequency — Relative frequencies of events, infinite sequences;

� Propensity — Causal, single case, relative frequency;

� Logical — Partial entailment among propositions;

� Classical — Equally possible alternatives;

� Subjective — Logic of uncertain beliefs, opinions, judgements;

� Subjective — Logic of uncertain beliefs, opinions, judgements;



Interpretations of Probability

Probability has had multiple interpretations:

� Mathematical — Measure theory, not interpreted;

� Frequency — Relative frequencies of events, infinite sequences;

� Propensity — Causal, single case, relative frequency;

� Logical — Partial entailment among propositions;

� Classical — Equally possible alternatives;

� Subjective — Logic of uncertain beliefs, opinions, judgements;

� Subjective — Logic of uncertain beliefs, opinions, judgements;



Interpretations of Probability

Probability has had multiple interpretations:

� Mathematical — Measure theory, not interpreted;

� Frequency — Relative frequencies of events, infinite sequences;

� Propensity — Causal, single case, relative frequency;

� Logical — Partial entailment among propositions;

� Classical — Equally possible alternatives;

� Subjective — Logic of uncertain beliefs, opinions, judgements;

� Subjective — Logic of uncertain beliefs, opinions, judgements;



Interpretations of Probability

Probability has had multiple interpretations:

� Mathematical — Measure theory, not interpreted;

� Frequency — Relative frequencies of events, infinite sequences;

� Propensity — Causal, single case, relative frequency;

� Logical — Partial entailment among propositions;

� Classical — Equally possible alternatives;

� Subjective — Logic of uncertain beliefs, opinions, judgements;

� Subjective — Logic of uncertain beliefs, opinions, judgements;



Why Consider Bayesian Statistical Theory?

Pragmatic Reasons

� Solve more statistical problems

� Implement more realistic models

� Less concern with sample size issues

� Solve technical problems, e.g., negative variances,
ill-conditioning, non-standard distributions, complex estimation

� Supplement the likelihood function with additional constraints
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Radical Reasons

� Satisfactory interpretation of probability axioms.

� Unified approach to probability and statistics.

� Incorporate prior information.

� Conceptual difficulties with foundations of frequentist approach.



Frequency Theory of Probability

The probability of an attribute !i in a reference set
f!1; : : : ; !Kg is p:

means exactly (no more and no less) that

The limit of the relative frequency of occurrences of !i that
would be obtained were the reference set f!1; : : : ; !Kg
realized infinitely often is p, i.e.,

lim
N!1

#.!i /
N
D p:

or equivalently,

8� > 0 9N 8n > N

ˇ̌̌̌
#.!i /
n
� p

ˇ̌̌̌
< �:



Advantages of Frequency Definition

lim
N!1

#.!i /
N
D p:

1 Defined: Limit of a sequence.

2 Empirical: Based on observations.

3 Operational: Procedure to define a specific probability.

4 Objective: Everyone can agree on the probability of an event.

5 Mathematical: Satisfies the (Kolmogorov) axioms of probability.



What’s Wrong with the Frequency Theory?

lim
N!1

#.!i /
N
D p:

1 Not defined: Convergence of a physical process is not
well-defined.

2 Not empirical, but hypothetical: Not based on finite set
observations, but on unobserved limit.

3 Counterfactual: Based on what would happen in an infinite
sequence.

4 Not operational: No finite sequence yields any information
regarding the hypothetical limit.

5 Not satisfactory: Does not satisfy axioms: not countably
additive, does not form a � -algebra.
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Fixing the Frequency Theory

Additional assumptions are required to address the defects in the
Frequency Theory.

� Note that one cannot use the LLNs to fix defects. (Probability
not yet defined.)

� Postulate of (non-mathematical) Convergence: The sequence
converges and does so rapidly.

� Postulate of (non-probabilistic) Randomness: Any (recursively
computable) subsequence of the sequence converges to the
same limit.

Frequency theory requires additional, non-testable, subjective
assumptions.



Comments on “Objective” Probability

� Ramsey — “There are no such things as objective chances
. . . Chances must be defined by degrees of belief.” (1931 )

� de Finetti — “[Objective] probability does not exist!” (1972)

� Laplace — Probability is “only the expression of our ignorance
of the true causes.” (1814)
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First Look at Bayesian Analysis

� Bayesian Statistical Theory (BST) is radically different from
frequentist (Neyman-Pearson + Fisher) theory statistics

� BST is distinguished by the fact it uses subjective probability
and Bayes’s Theorem for inference.

� BST is not just another class of statistical models like structural
equation models or multilevel models.

� BST can in principle analyze any statistical model.

� Even though the obtained numbers may be the same as in
frequentist theory, the interpretation will be different.

� Inferential reasoning is more natural in BST than in frequentist.



Comparison of Bayesian and frequentist Theories

Feature Bayesian frequentist

Content Beliefs Decisions
Unifying Principle Coherence Inductive behavior
Probability Subjective Objective
Repeated Events Exchangeability Independence

Data Fixed Random
Parameters Random Fixed, unknown

Inference Bayes’s Theorem Unbiased, MLE, MSE, etc.
Confidence interval Fixed Random
Hypothesis testing Posterior NHST,Significance, power



Three Pillars of Bayesian Statistical Theory

There are three theorems that form the foundations of BST.

1 Coherence: Logic of subjective probability;

2 Exchangeability: Repeated events (or measurements);

3 Bayes’s Theorem: Inference;
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Subjective Probability: Coherence

� Probability is the logic of uncertain beliefs, judgements, or
opinions.

� Your opinion can be represented as a set of subjectively fair
bets on an event.

� Events may be unique. No repetition is required.

� Coherence principle: Avoid sets of bets that entrain a
guaranteed loss. A form of pragmatic consistency.



Consistency and Coherence

� Deductive logic is the logic of certainty$ Probability is the logic
of uncertainty.

� Deductive logic preserves consistency$ Probability preserves
coherence.

� Deductive logic is content-free. $ Probability is content-free.
(Very important!)

� Deductive logic does not establish truth but just transmits it$
Probability does not establish uncertainty but just transmits it.

Subjective probability is as objective as deductive logic.
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Example of Incoherence

Suppose you give judgements regarding a manned mission to Mars.

Events .2015 W 2020� .2020 W 2040� .2040 W 2060�

Odds Against 8 W 1 2 W 1 1 W 1

Bets ($) 2 6 9 Gain

.2015 W 2020� �16 C6 C9 �1

.2020 W 2040� C2 �12 C9 �1

.2040 W 2060� C2 C6 �9 �1

� No matter what the outcome, I lose $1. My judgements are
irrational (incoherent).

� Corresponding probabilities: 1
2
C

1
3
C

1
9
D

17
18
< 1.
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Suppose instead you change your bets to:
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Exchangeability for finite case

� The concept of exchangeability is the subjectivist’s equivalent to
random sampling.

� Given a set of N events.

� Let � W f1; : : : ; N g 7! f1; : : : ; N g be a permutation function.

� The set is exchangeable if any sample of size n � N is judged
to have the same distribution as any other sample of size n.

� pr .x1/ D pr
�
x�.1/

�
� pr .x1; x2/ D pr

�
x�.1/; x�.2/

�
� . . .

� pr .x1; x2; : : : ; xn/ D pr
�
x�.1/; x�.2/; : : : ; x�.n/

�



Exchangeability for infinite case

� An infinite set of events is infinitely exchangeable if any
arbitrarily large finite sample of those events is exchangeable.

� DeFinetti’s Representation Theorem (1937): If an infinite set of
events is infinitely exchangeable, then the events can be
modeled as if they were independent and identically distributed
events conditional upon some “unknown” parameter.

� If fx1; : : : ; xn; : : : g are infinitely exchangeable, then

prfx1; : : : ; xng D
Z

pr.x1 j �/; : : : ; pr.xn j �/ pr.�/d�:

� Exchangeable events are a mixture of conditionally independent
events.



Exchangeability Explicates Relative Frequency

If fx1; : : : ; xn; : : : g are infinitely exchangeable Bernoulli random
quantities, then

pr.x1; : : : ; xn/ D
Z 1

0

nY
iD1

�xi .1 � �/1�xi pr.�/d�;

where � D limn!1
P
xi=n: and pr.�/ is the density of the

“unknown” parameter � .

1 The randomness and convergence of relative frequencies is a
mathematical result from our judgement of exchangeability
regarding the random variables!

2 Independent and identically distributed (IID) random variables
conditional an uncertain parameter.



Extensions of Exchangeability

1 The indexing of events underlying exchangeability can be subtle
and complicated.

2 Multidimensional indices.

3 Partial exchangeability: Exchangeability with respect to
covariate indices.

4 Markov exchangeability: Exchangeability over adjacent pairs of
time indices.

5 Multilevel exchangeability: Exchangeability within hierarchy of
level indices.
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Bayes’s Theorem

1 Let � be a parameter of a model.

2 Let x be the obtained observation.

3 Let pr.�/ be the prior probability (density) of � .

4 Let pr.xj�/ be the likelihood of observing x given � .

5 Then the posterior distribution of the parameter � given the data
x is:

pr.� jx/ D
pr.xj�/ pr.�/R

pr.xj�/ pr.�/ d�
:

6 Interpretation: What your uncertainty regarding � should be
were you to observe x.

7 Note that frequentist inference only uses pr.xj�/:



Posterior Analyses

The posterior distribution contains all the information regarding the
impact of the observed data on the model parameters. Any
characteristic of the distribution can be examined. Analyses ands
summaries of the posterior convey the results of the analyses.

� Location—mean, median, model

� Spread—variance, quantiles

� Transformations of parameters

� Credible intervals—the probability that the parameter falls within
a fixed interval.

� Hypothesis tests—the probability that a model fits the data.



Bayesian Analysis of PTCA vs Stent for MI

RCT for percutaneous transluminal coronary angioplasty (PTCA)
versus provisional stenting (Stent) for reducing rates of myocardial
infarction (MI) or death (Savage, 1997).

Group Sample Survival Proportion

PTCA 107 83 .78
Stent 108 90 .83

� Oı D :05

� �2.1/ D 0:80; p D :37

� 95%CI D .�:06 W :17/



Sources of Priors

One of the biggest problems in using Bayesian statistics is the
requirement of a prior probability for the parameter(s).

� Personal: True beliefs, tacit beliefs, elicitation.

� Expert: My priors expert priors

� Scientific Community: Consensus versus adversarial.

� Previous data: Discounting.

� Theory.

� Technical: Conjugate, approximations.

� Non-informative: Weakly informative, reference (Objective
Bayes).



Swamping of Priors

� Dogmatic prior: Little or no uncertainty: prior probability
concentrated on very small interval or single point.

� Diffuse prior: Moderate or large amount of uncertainty.
Probability is diffused over a region and not concentrated at
single points.

� Data Swamping: Sufficient data will ‘swamp’ a diffuse prior
(Edwards, Lindman, & Savage, 1963).

� Bayesian “Central Limit Theorem”: In most cases, with sufficient
data, the posterior distribution of a parameter will have an
approximately normal distribution (Lindley, 1965).
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Posterior Analysis: Densities for Difference

Let ı denote the difference between the Stent and PTCA
propensities of survival.

� Density of ı. (ı is now a random variable)

� Density of difference of two beta densities

� Analytically extremely complicated

� Obtain density of difference by simulation
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Posterior Survival Difference
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Models of Interest

Recall ı denotes the difference between the Stent and PTCA
propensities of survival. Consider the following models:

Superiority: MS :05 < ı

Equivalence: ME �:05 � ı � :05

Inferiority: MI ı < �:05

Non-inferiority: MES �:05 � ı ME [MS

Non-Superiority: MEI ı � :05 ME [MI

Non-Equivalence: MSI ı < �:05 or :05 < ı MS [MI
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Models of Interest

Recall ı denotes the difference between the Stent and PTCA
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Posterior Probabilities of Models (ı)
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Frequentist Hypothesis Testing

� Compare two simple models:

� M0 W x � N.0; 1/ versus M1 W x � N.:5; 1/

� One sample.

� Select a one-sided test

� Choose the significance level ˛ and power 1 � ˇ:

� Determine the minimum sample size N:

� Obtain a sample of size n, fx1; : : : ; xng:

� Obtain the test statistic t D
p
n Nx:

� Calculate p D 1 � ˚.t/:



Frequentist Hypothesis Testing

Which study yields the most evidence favoring M1?

Study ˛ 1 � ˇ N n p

A :05 :80 25 9 :06

B :05 :80 25 25 :05

C :05 :80 25 50 :025

D :01 :90 53 53 :01

E :01 :90 53 106 :005

F :005 :95 72 72 :005

G :005 :95 72 144 :0025

H :001 :99 118 118 :001

I :001 :99 118 236 :0005



Bayesian Hypothesis Testing

� Compare two simple models:

� M0 W x � N.0; 1/ versus M1 W x � N.:5; 1/

� Assume Pr.M0/ D Pr.M1/:

� : : : : : :

� Calculate p D 1 � ˚.t/:

� Treat p as datum.

� Use density of p-statistic.

� Calculate

Pr.M1jp/ D
pr.pjM1/Pr.M1/

pr.pjM1/Pr.M1/C pr.pjM0/Pr.M0/
:



Bayesian Hypothesis Testing

Which study yields the most evidence favoring M1?

Study ˛ 1 � ˇ N n p Pr.M1jp/

A :05 :80 25 9 :06 :77

B :05 :80 25 25 :05 :73

C :05 :80 25 50 :025 :66

D :01 :90 53 53 :01 :86

E :01 :90 53 106 :005 :50

F :005 :95 72 72 :005 :87

G :005 :95 72 144 :0025 :24

H :001 :99 118 118 :001 :88

I :001 :99 118 236 :0005 :014



Posterior Probabilities and Sample Size
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Implications for Statistics

1 Statistics is probability theory.

2 Statistics is a logic of inference from data.

3 Parameters can be considered uncertain with a (subjective)
probability distribution

4 Uncertainty regarding parameters is updated by observations
via Bayes’s Theorem.

5 Flow of uncertainty from prior to posterior is objective
(deductive), not subjective.



Additional Topics

1 Likelihood Principle: Inference is based solely on data observed,
not on data that could have been observed but were not.

2 Data selection mechanisms.

3 Stopping rules.

4 Missing data.

5 Causal modeling.

6 Bayesian model comparison, selection, and averaging.

7 Computation.



Evolution of Statistics
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