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Determining an appropriate sample size for use in latent variable modeling techniques has presented

ongoing challenges to researchers. In particular, small sample sizes are known to present concerns

over sampling error for the variances and covariances on which model estimation is based, as well as

for fit indexes and convergence failures. The literature on the topic has focused on conducting power

analyses as well as identifying rules of thumb for deciding an appropriate sample size. Often the

advice involves an assumption that sample size requirement is moderated by aspects of the model

in question. In this study, an effort was undertaken to extend the findings of Gagné and Hancock

(2006) on measurement model quality and solution propriety to a broader set of confirmatory

factor analysis models. As well, we examined whether Herzog, Boomsma, and Reinecke’s (2007)

findings for the Swain correction to the ¦
2 statistic for large models would generalize to models

in our study. Our findings suggest that Gagné and Hancock’s approach extends to large models

with surprisingly little increase in sample size requirements and that the Swain correction to ¦
2

performs fairly well. We argue that likely rejection or model fit should be taken into account when

determining sample size requirements and therefore, provide an updated table of minimum sample

size that incorporates Gagné and Hancock’s method and model fit.
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The question of minimum required sample size for use in latent variable modeling is an

important issue, particularly when considering the popularity of structural equation modeling

(SEM) techniques (Breckler, 1990; Hershberger, 2003; Martens, 2005; Tremblay & Gardner,

1996). Past research recommends a variety of strategies for determining an appropriate sample

size (e.g., Anderson & Gerbing, 1984; Boomsma, 1982, 1985; Fan, Thompson, & Wang,

1999; Gerbing & Anderson, 1985; Jackson, 2003; MacCallum, Browne & Sugawara, 1996;

MacCallum, Widaman, Zhang, & Hong, 1999; Marsh, Balla, & McDonald, 1988; Tanaka,

1987). Rules of thumb provide some guidance, but can also produce inconsistent estimates

(Gagné & Hancock, 2006; Jackson, 2007) that impede the progress of scientific investigation;
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underestimating sample size can lead to incorrect conclusions about the tenability of a model,

whereas overestimating can waste researchers’ time and resources.

BRIEF OVERVIEW OF SAMPLE SIZE RESEARCH

Rules of thumb can be unconditional, such as establishing a minimum sample size for SEM

(e.g., N D 200) or conditional, such as basing sample size recommendations on features of

the model. An early conditional rule expressed sample size (n) requirements in terms of the

number of parameters estimated (q), denoted n/q (see Jackson, 2001, 2003, for more discussion

on this rule). This rule of thumb has been endorsed to varying degrees (Bollen, 1989; Herzog

& Boomsma, 2009; Kim & Bentler, 2006; Kline, 2005; Marsh et al., 1988; Mueller, 1996;

Nevitt & Hancock, 2004; Ullman, 1996); however, recommendations based on n/q have also

been questioned (Jackson, 2003, 2007; Marsh, Hau, Balla, & Grayson, 1998).

Such rules of thumb have the limitation in that they do not directly address an important

mechanism that influences sample size requirements: the assumption that unique factors are

uncorrelated with each other and with common factors (Gorsuch, 1983; MacCallum et al., 1999;

MacCallum, Widaman, Preacher, & Hong, 2001). MacCallum and his colleagues (MacCallum

et al., 1999; MacCallum et al., 2001) demonstrated that violations of this assumption in samples

are attenuated with greater sample size and higher factor loadings (thus higher communalities).

Furthermore, the authors spoke to the effect of p/f ratios (ratio of the number of measured

variables per latent variable), suggesting that the positive effect of reducing f relative to p is

the result of estimating fewer parameters.

Linking sample size requirements to an index of anticipated latent variable reliability is a

conditional rule that does address the previously referenced statistical assumption (Gagné &

Hancock, 2006). The relationship of sample size requirements to loading size and p/f ratio

suggests latent variable reliability as a determinant of necessary sample size. In earlier work,

Marsh et al. (1998) manipulated reliability by varying p/f and measured reliability using ¨,

attributable to McDonald (1985). More recently, Gagné and Hancock (2006) argued that higher

communality and p/f should be incorporated into one index in the study of sample size and

proper confirmatory factor analysis (CFA) and SEM solutions. Specifically, Gagné and Hancock

varied p/f and loading size, expressing their results in terms of ¨, as well as another index, H

(Hancock & Mueller, 2001), which is a maximal reliability estimate (see Gagné & Hancock for

formulas for ¨ and H and a comparative analysis). Gagné and Hancock found that adequate

sample size relates to both ¨ and H and that model estimates are more trustworthy in conditions

where reliability is reasonable and sample size is adequate. They provided a table showing the

minimum sample size necessary to maximize the chances of convergence, given H or ¨ and p/f.

BACKGROUND ON MODEL SIZE RESEARCH

Because all models in Gagné and Hancock’s (2006) study had three latent variables, an impor-

tant question is whether their approach holds for models with a larger number of latent variables.

Achieving levels of acceptable fit for larger models might be difficult (Herzog, Boomsma, &

Reinecke, 2007; Marsh, Hau, & Grayson, 2005); however, research suggests that increasing the
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p/f ratio can help reduce improper solutions and convergence problems (Anderson & Gerbing,

1984; Boomsma, 1982), but also produces positively biased ¦2 values (Gagné & Hancock, 2006;

Kenny & McCoach, 2003; Marsh et al., 1998). Increasing the number of latent and measured

variables, but maintaining a constant p/f ratio, also increases ¦2 bias (Herzog et al., 2007).

Recently, Herzog et al. (2007) examined the effect of model size with CFA models ranging

from 4 to 16 latent variables with three indicators each and found that the maximum likelihood

¦2 statistic is positively biased with large models. However, these authors found that a correction

attributed to Swain (1975) showed promise for rescaling the ¦2 value. They argued that studies

involving large models are likely rejected due to poor fit and, furthermore, because many

commonly used indexes of fit are reexpressions of ¦2 values; this problem is a concern for

other fit measures (Herzog & Boomsma, 2009).

THIS STUDY

This current study extends the work of Gagné and Hancock (2006) on sample size and construct

reliability to a broader range of CFA models by varying both p/f and the number of latent

variables ( f ). Specifically, our extension involves testing a broader range of f than Gagné and

Hancock, whose population models all included three latent variables. Increasing the p/f ratio

and the number of latent variables is expected to produce positively biased ¦2 values; therefore,

the second aim of the study extends the work of Herzog et al. (2007) by evaluating the effect

of the Swain correction to reduce ¦2 bias across this broader range of models. Because Herzog

and Boomsma (2009) found it valuable to correct fit measures using the Swain correction, we

also examine corrected and uncorrected versions of fit measures.

METHOD

Design

Consistent with Gagné and Hancock (2006) and Marsh et al. (1998), we used p/f levels of 2,

3, 4, 5, 6, 7, and 12; sample sizes of 25, 50, 100, 200, 400, and 1,000; and all factors had

population correlation values of .30. There were four levels of f: 3, 6, 12, and 16. Whereas

three latent variables were used in previous work, the other levels represent a model that

might be frequently encountered in the literature .f D 6/, and two larger models that would

be encountered infrequently (f D 12 and 16). Two homogeneous loading conditions were

chosen: .40 and .80. This resulted in a 7 (p/f) � 4 ( f ) � 6 (sample size) � 2 (loading size)

design, yielding 336 cells. For each cell, we attempted to obtain 1,000 properly converged

solutions, but set a maximum of 5,000 replications, as we anticipated that some cells would

have high convergence failure rates.

There are other conditions that we could have manipulated. For instance, Gagné and Hancock

(2006) found convergence effects for heterogeneous loading conditions. However, to keep a

manageable design, we chose to examine only the conditions deemed necessary to adequately

answer the central research questions. Notably, our choices resulted in low sample sizes for

some model conditions. We anticipated this being problematic and it could be argued that some
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of the conditions should have been eliminated (e.g., Skrondal, 2000). However, we included

these conditions to comment on them (see, e.g., Marsh et al., 1998).

Data Generation and Model Fitting

SAS version 9.1 for Windows was used to generate multivariate normal data according to the

population models outlined. All authors created the data generation and fitting programs, based

on a template provided by the first author. Every program was checked by one of the other

authors. Latent variable variances were set to 1.0, and data were generated from a standard

normal distribution, using randomly chosen seed values.

SAS (PROC CALIS) was used to fit the models, using the maximum likelihood estimation.

Initial start values for parameter estimates were set to the known population values when

fitting models (Gagné & Hancock, 2006). A maximum of 500 iterations and function calls

were allowed and if convergence criterion was not satisfied, the models were coded (by SAS)

as not converged. For models where the number of variables exceeded the sample size, the ridge

option was specified and SAS’s default ridge factor was utilized (choosing a ridge factor so that

the smallest eigenvalue is approximately 10�3). Parameter estimates, convergence information,

and fit values were saved to output files for subsequent analyses.

Data Analysis

Practical significance. We adopted a cutoff of ¨2 D :03 (Anderson & Gerbing, 1984)

for interpreting effects. Simple descriptive procedures were used to communicate results such

as rejection rates and solution propriety.

Solution propriety. We adopted Gagné and Hancock’s (2006) definition of solution pro-

priety as a solution that converged without any improper values (e.g., Heywood cases). We

used the phrase proper solution to mean the same thing. Furthermore, we adopted their index of

C, defined as the number of replications required to obtain 1,000 proper solutions. Satisfactory

C represents conditions where 1,100 or fewer replications are required to achieve 1,000 proper

solutions.

Swain correction. The Swain correction is from an unpublished dissertation (Swain,

1975). Herzog et al. (2007) indicated that asymptotically, the Swain corrected ML ¦2 statistic

matches the ML ¦2 distribution. The Swain correction can be defined as:

s D 1 �
p.2p2 C 3p � 1/ � q.2q2 C 3q � 1/

12dn
(1)

where

q D

p

1 C 4p.p C 1/ � 8d � 1

2
(2)

For these equations, p is the number of observed variables, d is the degrees of freedom, and n

is the sample size, N � 1. The adjustment to ¦2 is made by multiplying the ML ¦2 value by

the Swain correction s: MLS D s.¦2/.
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Reporting findings. It was not possible to report all of the findings, but descriptive statis-

tics for each condition are available on request. We primarily concentrated on findings that are

relevant to our two research questions.

Outcome Expectations

Solution propriety, a function of nonconvergence and improper solutions, could result from

empirical underidentification (see, e.g., Rindskopf, 1984; Wothke, 1993); therefore, we expected

conditions with low n/q ratios to experience high convergence failures. Past research suggested

that solution propriety is a function of both p/f and loading size, with greater numbers of

improper solutions occurring in models with low p/f values (such as p/f D 2) and low loading

conditions (Loading D 0.40). These two conditions should combine to produce high levels

of improper solutions. We expected the combination of small sample size, low p/f, and small

loadings to produce disastrous results.

Given its past performance (Fouladi, 2000; Herzog & Boomsma, 2009; Herzog et al., 2007),

we anticipated that the Swain (1975) correction would adequately correct ¦2 values across a

broader range of models than previously shown. In addition to biased ¦2 values, we assumed

that when models are large relative to sample size, other fit indexes will reflect poorer fit relative

to smaller models. Past findings revealed lower Comparative Fit Index (CFI; Bentler, 1990)

values and positively biased root mean square error of approximation (RMSEA; Steiger &

Lind, 1980) values in smaller sample size conditions (Curran, Bollen, Paxton, Kirby, & Chen,

2002; Ding, Velicer, & Harlow, 1995; Herzog & Boomsma, 2009). Therefore, we expected

that applying the Swain (1975) correction to fit indexes would result in more favorable values

when models were large, or sample sizes were small as observed by Herzog and Boomsma in

the models they studied.

RESULTS

Solution Propriety

Convergence failures occurred more with small sample sizes .N � 100/, larger number of

latent variables (f D 12 or 16), low loadings (.40), and low p/f values (p/f D 2 or 3). Table 1

presents an extension of Gagné and Hancock’s (2006) table of satisfactory C. Sample sizes in

the range of two to four times greater are required for the low loading condition compared to

the high loading condition. However, this ratio depends on the level of p/f. That is, with higher

p/f values, the difference in sample size requirement was smaller between the two loading

conditions compared to the difference with lower p/f values.

Examining ¦2 Bias

As some cells had no or very few proper convergences across the replications, we eliminated

the smallest sample size conditions (N D 25 and N D 50). Taking the first 1,000 observations

(proper solutions), we calculated the relative ¦2 bias as suggested by Bandalos (2006). The

majority of cells had more than 800 observations, however at the N D 100 level there were
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TABLE 1

Minimum Sample Size for Satisfactory Convergence (C � 1,100)

N

p/f a 3 Factors 6 Factors 12 Factors 16 Factors

2 .40 — 1,000 1,000 1,000

.80 400 400 400 400
3 .40 400 400 400 400

.80 50 50 100 100

4 .40 200 200 200 400
.80 25 50 50 50

5 .40 200 200 200 200

.80 25 25 50 50
6 .40 100 100 200 200

.80 25 25 50 50

7 .40 100 100 100 200
.80 25 25 25 50

12 .40 50 50 100 100

.80 25 25 25 50

Note. p/f D number of measured variables loading on each factor; a D

population loading value for all measured variables; n D minimum sample size
associated with satisfactory convergence; — D cells where N > 1,000 would be

required.

two cells with few observations (12 and 16 factor models, with p/f D 2 and population loadings

of .40).

As expected, small samples yielded more positively biased ML ¦2 values .¨2 D :065/.

Relative ¦2 bias increased with increasing p/f .¨2 D :116/ and f values .¨2 D :057/. The

relative MLS ¦2 bias was smaller across the cells compared to the uncorrected ML ¦2 values

(Table 2). Although it appears the correction helped, there were still some cells that departed

considerably from zero, namely the cells with larger p/f and f values.

There was a significant three-way interaction between f, p/f, and sample size .¨2 D :080/.

The interpretation of this interaction is straightforward: The degree of ¦2 bias tends to become

greater with higher levels of p/f, and the rate of increase becomes more pronounced with higher

levels of f; however, this effect is attenuated as sample size increases. In other words, to reduce

¦2 bias as models grow larger, greater sample sizes are required, even when the Swain (1975)

correction is applied.

Rejection Rates

To further explore the ML and MLS ¦2 bias, we examined the tail behavior of the ¦2 values

across the conditions presented in Table 2. Table 3 contains the rejection rates corresponding to

the design factors represented in Table 2. As expected, the ML rejection rates for ¦2 increase

with increasing levels of f and p/f. The interaction for p/f and f can be seen in the tail behavior

of the ML ¦2, again with the differences in rejection rates between small and large p/f levels

being larger with more latent variables ( f ). Thus, correctly specified models are more likely to

be rejected at a given sample size as models become larger. The MLS ¦2 improved rejection
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TABLE 2

Relative Bias for Maximum Likelihood and Swain Corrected Maximum Likelihood ¦2 Values by p/f and f

ML ¦2 Bias

f

MLS ¦2 Bias

f

p/f 3 6 12 16 Total 3 6 12 16 Total

2 �0.130 �0.039 0.000 0.016 �0.048 �0.140 �0.060 �0.029 �0.019 �0.070

3 �0.005 0.021 0.060 0.084 0.038 �0.024 �0.014 �0.004 0.000 �0.011
4 0.019 0.042 0.094 0.135 0.071 �0.005 �0.004 0.004 0.010 0.001
5 0.025 0.058 0.136 0.210 0.107 �0.004 0.001 0.012 0.029 0.009

6 0.036 0.073 0.176 0.318 0.151 0.001 0.004 0.022 0.071 0.024
7 0.043 0.087 0.229 0.434 0.198 0.002 0.005 0.036 0.107 0.038

12 0.073 0.174 0.630 0.802 0.420 0.005 0.021 0.131 0.074 0.058

Total 0.010 0.061 0.201 0.306 0.141 �0.023 �0.006 0.028 0.043 0.010

Note. f D the number of latent variables; p/f D the number of measured variables per latent variable. The total
values represent the mean for each marginal condition. ML D maximum likelihood ¦2; MLS D Swain corrected

maximum likelihood ¦2 . The total means and grand mean are not equally weighted across conditions.

rates, but did not completely correct the Type 1 error rates, as sample size is not taken into

account. The MLS ¦2 appears to perform well for most levels of p/f for f D 3, and for f D 6,

but deteriorates with larger models. Generally speaking, over more varied conditions, the MLS

¦2 outperformed the uncorrected ML ¦2, but did not completely correct for model size. Based

on findings from the three-way interaction, it is clear that sample size must be taken into

account when using the MLS ¦2 and ML ¦2.

Analysis of Fit Indexes

The RMSEA and the CFI were analyzed in cells with sample sizes of 100 or greater. An

exhaustive report of analyses is not undertaken, as the effects are largely what would be

TABLE 3

Rejection Rates for Maximum Likelihood and Swain Corrected Maximum Likelihood ¦2 Values by p/f and f

ML Rejection Rates

f

MLS Rejection Rates

f

p/f 3 6 12 16 Total 3 6 12 16 Total

2 0.027 0.033 0.051 0.081 0.044 0.027 0.027 0.026 0.027 0.027

3 0.048 0.072 0.272 0.440 0.201 0.041 0.037 0.049 0.057 0.046
4 0.065 0.135 0.495 0.669 0.334 0.050 0.046 0.068 0.124 0.071
5 0.077 0.234 0.660 0.796 0.442 0.049 0.051 0.125 0.303 0.132

6 0.098 0.359 0.754 0.877 0.522 0.053 0.062 0.250 0.354 0.179
7 0.125 0.449 0.826 0.931 0.583 0.054 0.064 0.320 0.424 0.215

12 0.359 0.751 0.995 1.000 0.776 0.059 0.248 0.560 0.556 0.356

Total 0.115 0.295 0.610 0.725 0.429 0.048 0.077 0.211 0.282 0.152

Note. f D the number of latent variables; p/f D the number of measured variables per latent variable. The total
values represent the rejection rates for each marginal condition. ML D maximum likelihood; MLS D Swain corrected

maximum likelihood.
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expected based on either past research or the behavior of the ¦2 statistic just discussed. Our

main finding supports Herzog and Boomsma (2009) in that the variability of the Swain corrected

versions of RMSEA and CFI were considerably lower than the uncorrected versions of these

fit measures across experimental conditions.

Alternative Minimum Sample Size Requirements

Based on the interpretation of the three-way interaction among sample size, p/f, and f, we

constructed an alternative table to the one presented by Gagné and Hancock (2006), and

analogous to Table 1 in this article. Table 4 contains minimum sample size requirements for

levels of p/f and f, taking into account solution propriety and expected ¦2 bias. Sample size

requirements are presented for each of the combinations of f, p/f, and loading size that would

be expected to yield either ML or MLS ¦2 values that fall within the 99% confidence interval of

’ D :05, where the confidence interval was constructed based on Nevitt and Hancock (2004):

CI is Œ:05 ˙ 2:575.:05 � :95=1000/1=2� � 100 D Œ3:23%; 6:77%�. To construct Table 4 we began

with the minimum sample size requirement values in Table 1 and determined whether that

sample size requirement also yielded an acceptable rejection rate for either the ML ¦2 or MLS

¦2. If the rejection rate was not acceptable, the next largest sample size was consulted, and so

on, until both solution propriety and acceptable rejection rate were satisfied. In some cases the

usual ML ¦2 values were acceptable, but with larger model sizes, generally only the MLS ¦2

values were acceptable.

TABLE 4

Minimum Sample Size for Satisfactory Convergence

(C � 1,100) and ¦2 Bias

N

p/f a 3 Factors 6 Factors 12 Factors 16 Factors

2 .40 — 1,000 1,000 1,000

.80 400 400 400 400
3 .40 400 400 400 1,000

.80 50 50 200 200

4 .40 200 200 200 400
.80 50 100 200 400

5 .40 200 200 200 400

.80 50 100 400 400
6 .40 100 100 400 1,000

.80 200 200 1,000 1,000

7 .40 100 200 1,000 1,000
.80 100 200 400 1,000

12 .40 200 400 1,000 >1,000
.80 100 1,000 1,000 >1,000

Note. p/f D the number of measured variables loading on each factor; a D

population loading value for all measured variables; N D minimum sample size
associated with satisfactory convergence. Normal typeface indicates that both ML

and MLS ¦2 values fell within the 99% confidence interval; bold indicates only ML
¦2 fell within the confidence interval; and italics indicates only the MLS ¦2 fell

within the confidence interval.
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Finally, Table 1 presents a pattern where sample size requirements are consistently lower

for higher loading conditions compared to lower loading conditions. Although this was mostly

the case in Table 4, the reverse was true for some larger models. For instance, all of the

p/f D 6 models in the high loading condition required larger sample sizes than the low loading

condition. In these cases, the MLS ¦2 values for lower sample sizes are close to falling within

the 99% confidence interval.

DISCUSSION

This study extends Gagné and Hancock’s (2006) work on minimum sample size recommen-

dations based on latent variable reliability and model solution propriety to large models. Our

findings demonstrate that this approach to establishing minimum sample size estimates holds

promise. In fact, only modest increases in sample size requirements with increasing numbers

of latent variables are required (see Table 1). However, we feel that the approach by Gagné

and Hancock has an important shortcoming: it does not take into account model fit.

We have incorporated model fit into Gagné and Hancock’s (2006) approach by taking into

account the tail behavior of the ML and MLS ¦2 (Table 4). We argue that it is important

to consider model fit in the study of minimum sample size requirements because applied

researchers do not know the form of the population model for their data (see, e.g., Browne

& Cudeck, 1993; MacCallum, 2003). Specifically, while the Gagné and Hancock approach

provides minimum sample size requirements resulting in a high likelihood of a proper solution

and reasonable parameter estimates, applied researchers might not recognize that they have

found a viable model based on the ¦2 statistic and other measures of fit. Take the example of

a model with six latent variables and six measured variables per latent variable, and loading

values of .80. In consulting Table 1 we assume that a sample size of 25 would be sufficient;

however, this model would almost certainly be rejected based on the ML and MLS ¦2 values

(both had rejection rates of 100%), and after an evaluation of the RMSEA (mean value for

this cell was .285) and CFI (mean value for this cell was .326). Even the RMSEAS (mean

value for this cell was .126) or the CFIS (mean value for this cell was .869) causes us to

doubt this model. However, a sample size of 200, which is the recommendation in Table 4,

would produce a different judgment about this same model. The ML ¦2 and MLS ¦2 rejection

rates were better (.346 and .061, respectively) and both the RMSEA indexes (RMSEA D .018;

RMSEAS D .007) and CFI indexes (CFI D .990; CFIS D .997) fall within a more acceptable

range. The sample size recommendations taking into account model fit (Table 4) result in the

high likelihood of a proper solution and the researcher being more likely to recognize the

model as having satisfactory fit and, therefore, provide a useful starting point for estimating

the required sample size.

The Swain (1975) correction appears to be useful not just when models are made larger

by increasing the number of factors, but also when models are made larger by increasing

p/f. However, as p/f and f increase, even larger sample sizes are needed, even when applying

the MLS ¦2 statistic, to not overreject true models. Consistent with previous research, many

ancillary fit measures can be recalculated using the MLS ¦2 so that they are not as biased

toward model rejection (Herzog & Boomsma, 2009). However, some issues remain unresolved
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with respect to the Swain (1975) correction. For instance, the correction should be evaluated

for different forms of models prior to routine application (Swain).

Limitations and Directions for Future Study

As with other Monte Carlo studies, our investigation involves simplifying decisions that result

in lower external validity, such as homogeneous loadings, all latent variables within a model

are of the same size (e.g., all p/f D 3, or all p/f D 6), coarse sample size choices, and the data

generated for this study were continuous with a multivariate normal population distribution.

Therefore, although encouraging, the promise of this approach should be examined across more

varied conditions. Furthermore, we believe that what is important in this study is not as much

the table of minimum sample size recommendations, as it is produced under ideal conditions

where the true population model is known, but rather the further validation and refinement

of a method introduced by Gagné and Hancock (2006) to recommend minimum sample size

requirements. We acknowledge that much work still needs to be done. Future research should

focus on the shortcomings just outlined, as well as examining the effects of nonnormality.
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