
Revisiting Sample Size and Number of
Parameter Estimates: Some Support for

the N:q Hypothesis
Dennis L. Jackson

Tricon Global Restaurants, Inc.
Louisville, KY

A number of authors have proposed that determining an adequate sample size in
structural equation modeling can be aided by considering the number of parameters
to be estimated. While this advice seems plausible, little empirical support appears to
exist. A previous study by Jackson (2001), failed to find support for this hypothesis,
however, there were certain limitations to the study that likely led to the lack of find-
ings. This study revisits the issue with a design modified to be more sensitive to prac-
tically significant effects of sample size to parameter estimate ratio. Consequently,
some support was found for this hypothesis, notably among overall fit measures and
tests. Results indicate that higher values of the observations per parameter ratio had a
positive effect for some measures of fit. However, the overall effect was small relative
to absolute sample size.

When planning research that will utilize structural equation modeling techniques,
researchers are faced with the question of identifying an adequate sample size. Vari-
ous approaches to arriving at a sample size have been suggested, such as a minimum
sample size (e.g., 200), having a certain number of observations per measured vari-
able, or through conducting power analyses (e.g., MacCallum, Browne, &
Sugawara, 1996). Another suggested approach equates the necessary sample size to
the number of parameters that must be estimated (e.g., Bentler & Chou, 1987;
Bollen, 1989; Kline, 1998, Marsh, Balla, & McDonald, 1988; Mueller, 1997;
Tanaka, 1987; Ullman, 1996), where higher values of the ratio of observations to pa-
rameters to be estimated (N:q) are preferred. In a previous study, Jackson (2001)
failed to find support for this approach. However, the failure to find any practically
significant effects for N:q likely had to do with the study design, namely not having
enoughvariation in the independentvariableofN:q (P.M.Bentler, personal commu-
nication, June2001).Mystudyrepresentsanattempt to revisit thispreviousworkus-
ingamodifieddesign that incorporatesmorevariance in this independentvariable.
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Thequestionofhowlargeofasamplesize is requiredforcovariancestructuremod-
eling (CSM) is a deceptively difficult one to answer. A growing body of simulation
worksuggests that it isdependentuponseveral things,suchas thenumberof indicators
per latent variable (Gerbing & Anderson, 1985; Marsh, Hau, Balla, & Grayson, 1998;
Velicer&Fava,1998); thestrengthofassociationbetween the indicatorsand the latent
variables (Bandalos, 1997; Gerbing & Anderson, 1985; Velicer & Fava, 1998), the de-
gree of multivariate normality (West, Finch, & Curran, 1995) and estimation method
(Fan, Thompson, & Wang, 1999; Fan & Wang, 1998; Tanaka, 1987).

The advice to consider sample size (N) in terms of number of parameters to be es-
timated (q)canbesupportedbya fewdifferent arguments.First, inCSM, thenumber
of measured variables determines the number of variance and covariance elements
that comprise the covariance matrix; however, it does not determine the number of
model parameters that must be estimated. For instance, with 20 measured variables
thereare210uniqueelements in thevariance–covariancematrix.However, anyvari-
ety of models can be hypothesized to reproduce these unique elements, all the way
from a highly saturated model (i.e., lots of parameters) to a very restrictive model
with very few parameters. One can see how this fact would lead investigators to con-
clude that sample size should be based on the number of parameters being estimated,
rather than, for instance, the number of measured variables.

A second argument, is based on achieving adequate power for hypothesis testing.
MacCallum et al. (1996) tied sample size to the expected effect size and the degrees
of freedom. More degrees of freedom and larger effect sizes mean that fewer obser-
vations are needed to achieve acceptable levels of power. Fewer degrees of freedom,
implying more parameters being estimated, means larger sample and effect sizes
need to be realized to achieve adequate power. It should be noted that MacCallum et
al. (1996) acknowledged that there are other considerations for sample size besides
hypothesis testing, such as parameter estimation precision.

Finally, there is the question of replication. When conducting research, a re-
searcher hopes to arrive at a conclusion that will be replicated in future studies.
Some researchers (e.g., Browne & Cudeck, 1993) have argued that less complex
models will replicate better, especially with smaller samples. Furthermore, it has
been argued that some fit indexes favor highly parameterized models when using
large samples (Cudeck & Henly, 1991). Therefore, presumably the logic is that
larger sample sizes may be required to replicate results from a model with a large
number of parameters being estimated.

Recommendations for determining sample size, based on the number of param-
eters to be estimated, has made it into some recently published text books on SEM
(Kelloway, 1998; Kline, 1998; Mueller, 1996). For instance, Kline (1998) suggests
that, in the context of confirmatory factor analysis, N:q values in the range of 10:1
(10 observations per one estimated parameter) or even 20:1 seem appropriate.
Whereas authors may offer different recommendations concerning the actual ratio
needed, it is clear that the assertion that sample size should be considered in light
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of the number of parameter estimates is somewhat ensconced in the knowl-
edge-base of CSM. Though this seems like a reasonable assertion, and limitations
of the previous work (Jackson, 2001) not withstanding, the assertion does not ap-
pear to have empirical support.

A question that remains is, if N:q is an important consideration in CSM, then in
what ways will an inadequate N:q manifest itself? The advice of striving for a given
N:q is presumably not dispensed for reasons of statistical power of an overall fit sta-
tistic, as samplesize requirements relative topowercanbeestimatedbyothermeans.
Asmentionedearlier, it couldbe to increase the likelihood that the resultswillbe rep-
licated. Furthermore, it could be due to a desire to obtain more precise parameter es-
timates or more reliable statistical tests for individual parameter estimates. An as-
sumption of this study is that, if a small sample size relative to the number of
estimated parameters tends to result in solutions that are in some way inferior, then
the effect should be detectable by examining overall measures of fit, overall statisti-
cal tests, parameter estimate variability, and parameter estimate precision.

The primary purpose of this study is to attempt to find support for the assertion
that N:q is a meaningful way to think about sample size. Previous research suggests
that an examination of N:q must be done in the context of other factors that influence
the quality of CSM solutions, namely sample size, indicator reliability, and the num-
ber of measured variables per latent variable. My study is a simulation study and is
necessarilyvulnerable to limitationsassociatedwithsuchanapproach.For instance,
the variety of data idiosyncrasies and models that are presented in the literature can-
not be addressed in simulation work. However, at this stage of the research in this
area, andgiven the researchquestionbeingposed, a simulationdesignseems tobean
appropriate and defensible approach. Therefore, it was hypothesized that the ratio of
the number of subjects to the number of estimated parameters would affect either the
variance or bias in the parameter estimates, the values or variance of summary fit in-
dexes, or some combination of these dependent variables. Consistent with previous
findings (e.g., Anderson & Gerbing, 1984; Gerbing & Anderson, 1985; Velicer &
Fava, 1998), it was hypothesized that sample size, indicator reliability, and the num-
ber of measured variables per factor would impact parameter estimate variability as
well as certain fit indexes.

METHOD

Study Design

Thedesignusedfor thisresearchcloselyfollowedtheonedescribedbyJackson(2001)
with twomaindifferences.First, three levelsofN:qwereused in thisstudywhereas the
aforementioned study contained two; second, in the study this independent variable
(N:q)hadmuchmorevariability.Thenumberofmeasuredvariableswasheldconstant
across all conditions (20 variables). In total, the design contained four independent
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variables: sample size (N = 50, 100, 200, 400, and 800); the number of latent variables
(hencethenumberofmeasuredvariablesper latentvariable); indicatorreliability;and,
the number of observations per estimated parameter (N:q).

There were five latent variable conditions: one latent variable having 20 indica-
tors; two latent variables having 10 indicators each; three latent variables having
seven indicators on the first two and six on the third; four latent variables having
five indicators each; and five latent variables having four indicators each. All mea-
sured variables loaded on only one latent variable. Past work (Anderson &
Gerbing, 1984) has shown significant effects for the number of indicators per la-
tent variable on some overall fit indexes.

There were two conditions for indicator reliability, 0.60 and 0.80. For each con-
dition, the population model had all loadings equal to 0.60 or 0.80 (r2 = 0.64 and
0.36, respectively). Put another way, there were no mixed loading conditions. As
noted previously, the reliability of the variables (strength of association between
the variable and factor) has been found to influence CSM solutions (e.g., Anderson
& Gerbing, 1984; Bandalos, 1997; Velicer & Fava, 1998).

In models with more than one factor, the data were generated so that the true
value of the factor correlations was 0.50. This meant that, as each factor was added,
the number of estimated parameters increased. With two factors, there was one ad-
ditional parameter, the correlation between factor one and factor two. With three
factors there were three additional parameters, with four there were six, and with
five, there were 10 additional parameters. While the number of parameters to esti-
mate was varied using this strategy, it was confounded with the number of vari-
ables per factor, since the number of variables was held constant.

The number of observations per parameter estimate was contrasted by varying
anothercondition,namelyaddingconstraints to themeasuredvariableparameteres-
timates. Borrowing from psychometric theory, three conditions were created corre-
sponding to three types of confirmatory factor models: congeneric; tau-equivalent;
and parallel. In the congeneric condition, the model was identified by setting the
variance of each latent variable to 1.0. No restrictions were placed upon factor load-
ingsorerrorvariances. In the tau-equivalentcondition, thevarianceof the latentvari-
ables was set to 1.0 and, in addition, the lambda estimates (factor pattern loadings)
were restricted to be equal for all 20 measured variables. Elements of the Phi matrix
(factor correlations) were free to be estimated. Finally, the parallel condition had the
same restrictions as the tau-equivalent condition and, in addition, restricted the error
variances to be equal.

These three conditions allowed for much greater contrast in the N:q variable
than in the previous study (Jackson, 2001). For instance, in the one factor conge-
neric condition, there were 40 parameters to be estimated (a factor loading for each
of the 20 measured variables and corresponding error variances). In the tau-equiv-
alent condition, there were 21 parameters to be estimated, the error variances for
each of the 20 measured variables and the factor loading for these variables. In the
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parallel condition, there were only two parameter estimates, the error variance and
the factor loading for the measured variables. Staying with the one-factor example,
this means that, for the smallest sample size (N = 50), the N:q ratio was 1.25 (1.25
observations per estimated parameter) for the congeneric condition, and 25 for the
parallel condition. For the largest sample size (N = 800), the N:q ratio was 20 for
the congeneric condition and 400 in the parallel condition.

By contrast, in the previous study (Jackson, 2001), N:q was manipulated by fix-
ing the lambda element of one measured variable per latent variable to its true
value. So, in the case of one latent variable, one additional parameter was fixed. In
the five-factor condition, five additional parameters were fixed. This resulted in
very little variation in the N:q variable. Staying with the one latent variable exam-
ple, the N:q ratio was 1.25 for the smallest sample size in the low N:q condition and
1.28 in the high N:q condition. Even in conditions where more parameters were
fixed (e.g., the five latent variable condition), there was very little variance be-
tween the high and low N:q conditions—1.00 vs. 1.11 at the smallest sample size
and 16 vs. 17.78 at the largest sample size. Clearly, the present study provides a
much better test of the N:q hypothesis.

Thus, this study examines the result of varying the number of parameters to be
estimated by constraining factor pattern loadings and error variances to be equal. If
the optimum sample size has something to do with the number of parameters being
estimated, then these constraints should reveal something of this relationship. One
estimation procedure, maximum likelihood, was used. The result was a Five
(model) × Five (sample size) × Two (reliability) × Three (number of subjects per
parameter, N:q) design.

Data Generation

The data used for this research were generated using SAS (1996) for the IBM
mainframe. Data for the 20 observed variables were generated according to the
models previously described. The data were generated using a random number
generator incorporated in SAS (1996) that yields an asymptotic distribution with a
mean of zero and standard deviation of one. Finally, 200 replications (covariance
matrices) for each cell were generated. As the author did not have access to SAS’s
Interactive Matrix Language module, the more conventional method of sampling
from a covariance matrix was not employed. Instead, data were generated using a
modification of a program presented by Bernstein (1995, see Jackson, 2001, for an
example). Care was taken to ensure the data generated from this program had a
multivariate normal distribution.

The SAS procedure PROC CALIS (SAS, 1996) was used to fit the confirmatory
factor analytic models to the data once they were generated. The statistics and pa-
rameter estimates generated by SAS were saved to a permanent file for subsequent
analyses.
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RESULTS

Convergence and Improper Solutions

Two of the sample covariance matrices—both involving low indicator reliability,
small samplesize, and fewer indicatorsper latentvariable—resulted inSASnotcon-
vergingonasolution.Results fromthese tworeplicationswerenot considered inany
further analyses. Inaddition, therewere several instancesof improper solutions (i.e.,
possible negative eigenvalues in the Phi matrix). These cases of improper solutions
inevitably occurred with sample sizes of 50, and were most prevalent in models with
more latent variables. Furthermore, there was a tendency for them to occur more of-
ten in the congeneric condition. These observations were not included in the analy-
ses reported in this article. Furthermore, the Sums of Squares based on independ-
ently partitioned variance (Type III sums of squares in SAS) were interpreted.

Practical Significance

With the large number of observations considered in this study, many significant
effects were anticipated. Because of this power, a criterion for practical signifi-
cance was adopted just as in Anderson and Gerbing’s study (1984), and only those
effects that met the criterion, an effect size of at least 0.03 (using ω2, e.g., Keppel,
1982), were interpreted and reported.

Measures of Fit

A number of fit indexes were analyzed as dependent variables in this study. The
measures were chosen to represent the various classes of fit indexes; absolute fit in-
dexes and Type 1, Type 2, and Type 3 incremental fit indexes. More detailed dis-
cussions of fit indexes can be found in Bollen (1989), Hu and Bentler (1995),
Marsh, Balla, and Hau (1996), Muliak et al. (1989), and Tanaka (1993).

The four absolute fit indexes examined in this study were chi-square bias, root
mean squared error of approximation (RMSEA; Steiger, 1990), the Good-
ness-of-Fit Index (GFI; Jöreskog & Sörbom, 1986), and the centrality index (CI;
McDonald, 1989). With two exceptions, which will be described later in this arti-
cle, the results were similar to previous findings (Jackson, 2001).

Sample size had a practically significant effect on chi-square bias (ω2 = 0.237),
which was calculated by subtracting the expected value (df) from chi-square then
dividing by the expected value. As the calculation implies, positive values of
chi-square bias indicated that the obtained chi-square value was larger than ex-
pected and negative values indicated the obtained chi-square value was smaller
than expected. Larger sample sizes were associated with smaller levels of
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chi-square bias. The largest sample sizes were associated with slightly negative
values of chi-square bias.

Additionally, sample size had a practically significant effect on RMSEA (ω2 =
0.556), GFI (ω2 = 0.977), and the CI (ω2 = 0.458). In the case of RMSEA, smaller
average values were associated with larger sample sizes and in the cases of CI and
GFI, larger average values were associated with larger sample sizes. Using ω2 as a
guide, sample size had the only practically significant effect on GFI and CI. How-
ever, the effect of N:q on CI was close to the cutoff (ω2 = 0.027), with higher values
of N:q being associated with higher values of CI. The average CI for the conge-
neric condition was 0.93 and the average CI for the tau-equivalent and parallel con-
ditions was 0.96 and 0.98, respectively. Many of the earlier mentioned effects were
very similar to those found in the previous study (Jackson, 2001), thus the inter-
ested reader may consult that paper for a more detailed discussion of these effects.
Table 1 contains mean and standard deviation values of CI and GFI by sample size.

The exceptions mentioned previously involved chi-square bias and RMSEA. In
addition to sample size, N:q also had a practically significant effect on both of
these fit measures (ω2 = 0.075 and ω2 = 0.034, respectively). Lower, even slightly
negative values of chi-square bias were associated with higher N:q (more observa-
tions per estimated parameter). Similarly, lower average values of RMSEA were
also associated with the higher N:q conditions. As can be seen in Table 2 the aver-
age chi-square bias value is lowest for the parallel model condition, which had the
highest N:q ratio, followed by the tau-equivalent condition, which had the second
highest N:q ratio. For the congeneric model, chi-square bias was positive for
smaller sample sizes and approached zero for sample sizes of 400 and 800. In the
tau-equivalent condition, the average chi-square underestimated its expected value
(df) at sample sizes as small as 200 and in the parallel condition the average
chi-square underestimated its expected value with sample sizes as small as 100.
For larger sample sizes (N = 800), the chi-square value was, on average, negatively
biased by as much as it was positively biased in the congeneric model at smaller
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TABLE 1
Means and Standard Deviations for the Goodness-of-Fit Index (GFI) and

Centrality Index (CI) for Varying Levels of Sample Size

GFI CI

Sample Size M SD M SD

50 0.734 0.023 0.775 0.182
100 0.849 0.015 0.972 0.104
200 0.919 0.009 1.006 0.052
400 0.958 0.005 1.006 0.026
800 0.978 0.003 1.005 0.013
Total 0.888 0.089 0.953 0.132



sample sizes (e.g., N = 100). In addition, from examining the standard deviations in
Table 2 it is apparent that the variability in RMSEA is smaller with larger sample
sizes. Furthermore, it appears that it is slightly smaller with larger values of N:q
relative to smaller values of N:q.

The three incremental fit indexes examined in this study were chosen to represent
the three categories of these types of indexes; Type 1, Type 2, and Type 3 (see Hu &
Bentler, 1995). The Normed fit index (NFI; Bentler & Bonett, 1980), the
Nonnormed fit index (NNFI; Tucker & Lewis, 1973; Bentler & Bonett, 1980), and
the comparative fit index (CFI; Bentler, 1990) were used to represent Type 1, Type 2,
and Type 3 indexes, respectively. Results from analyses of the incremental fit in-
dexes are similar to findings from the previous study (Jackson, 2001). For both the
Type 1 and Type 3 fit indexes (NFI and CFI), there was a practically significant effect
for sample size (ω2 = 0.715 and ω2 = 0.431, respectively), reliability of the indicators
(ω2 = 0.168 and ω2 = 0.049, respectively), and the interaction between the two (ω2 =
0.067 and ω2 = 0.089, respectively). For the Type 2 index, NNFI, there was a practi-
cally significant effect for sample size and the interaction between sample size and
the reliability of indicators (ω2 = 0.363 and 0.075, respectively). The main effect for
indicator reliability did not quite reach practical significance (ω2 = 0.025). Means
and standard deviations for the NFI, NNFI, and CFI, by sample size and indicator re-
liability, canbe found inTable3. Ingeneral, fit indexeswerehigheras sample size in-
creased for each type of fit index and fit indexes were higher for conditions where the
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TABLE 2
Chi-Square Bias and RMSEA for Varying Levels of Sample Size and N:q

Chi-Square Bias RMSEA

Sample
Size Congeneric

Tau-
Equivalent Parallel Total Congeneric

Tau-
Equivalent Parallel Total

M
50 0.169 0.118 0.085 0.124 0.063 0.050 0.041 0.051
100 0.072 0.021 –0.015 0.026 0.027 0.018 0.013 0.019
200 0.032 –0.028 –0.060 –0.019 0.014 0.008 0.005 0.009
400 0.010 –0.049 –0.072 –0.037 0.008 0.004 0.003 0.005
800 –0.002 –0.063 –0.086 –0.051 0.005 0.003 0.002 0.003
Total 0.056 0.000 –0.030 0.009 0.023 0.017 0.013 0.018

SD
50 0.092 0.096 0.096 0.101 0.023 0.025 0.026 0.026
100 0.102 0.106 0.108 0.111 0.019 0.018 0.016 0.018
200 0.107 0.110 0.113 0.116 0.013 0.010 0.009 0.011
400 0.111 0.112 0.114 0.118 0.009 0.007 0.006 0.008
800 0.109 0.117 0.116 0.119 0.006 0.005 0.004 0.005
Total 0.121 0.127 0.126 0.130 0.026 0.023 0.021 0.024

Note. RMSEA = root mean squared error of approximation.



indicator reliability was higher. In addition, the standard deviation of the fit indexes
was smaller for larger sample sizes and higher indicator reliability conditions.
Finally, the Type 1 fit index (NFI) performed more poorly than the Type 2 and Type 3
indexes at each level of sample size and in each indicator reliability condition. In
short, it was more prone to underestimate its maximum value. This finding has been
reported in previous work (e.g., Marsh et al., 1996).

Average fit values for each of the incremental fit indexes examined in this study
were higher with larger sample sizes and greater indicator reliability. In addition,
values of these fit indexes tended to increase more dramatically with increasing
sample sizes under the lower reliability conditions. It should be noted that, though
N:q did not have a practically significant effect on the incremental fit indexes, it did
have a statistically significant effect on them and it accounted for a greater propor-
tion of variance in this study than in the previous study for the Type 2 and Type 3
indexes (ω2 = .029 and 0.011, respectively). In both cases, there was a tendency for
models with higher N:q values to have higher fit indexes.

This was most notable for the NNFI. For the congeneric condition, the mean
NNFI was 0.974. For the tau-equivalent and parallel conditions, the mean NNFI
value was 0.984 and 0.994, respectively. In addition, the interaction between N:q
and sample size was statistically significant for NNFI, but had a practical signifi-
cance value shy of the cutoff (ω2 = .025) as did the main effect for indicator reli-
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TABLE 3
Fit Index Values for the NFI, NNFI, and CFI by Sample Size and Indicator

Reliability

Indicator Reliability

Sample
Size

NFI NNFI CFI

0.60 0.80 Total 0.60 0.80 Total 0.60 0.80 Total

M
50 0.535 0.760 0.649 0.891 0.959 0.925 0.892 0.959 0.926
100 0.716 0.875 0.795 0.984 0.995 0.990 0.974 0.991 0.983
200 0.839 0.936 0.888 1.001 1.001 1.001 0.992 0.997 0.995
400 0.914 0.968 0.941 1.002 1.001 1.002 0.997 0.999 0.998
800 0.955 0.984 0.970 1.002 1.001 1.001 0.999 1.000 0.999
Total 0.793 0.905 0.849 0.976 0.991 0.984 0.971 0.989 0.980

SD
50 0.069 0.040 0.126 0.091 0.037 0.077 0.076 0.031 0.067
100 0.050 0.021 0.088 0.048 0.017 0.037 0.032 0.011 0.025
200 0.030 0.011 0.054 0.023 0.008 0.017 0.013 0.004 0.010
400 0.017 0.006 0.030 0.012 0.004 0.009 0.006 0.002 0.004
800 0.009 0.003 0.016 0.006 0.002 0.004 0.003 0.001 0.002
Total 0.157 0.084 0.138 0.064 0.025 0.049 0.055 0.021 0.042

Note. NFI = Normed Fit Index; NNFI = Nonnormed Fit Index; CFI = comparative fit index.



ability (ω2 = .029). As would be expected, conditions with higher indicator reli-
ability resulted in higher average NNFI values (0.991 vs. 0.976). The interaction
between N:q and sample size resulted from a slight tendency for NNFI in high N:q
conditions to increase less with increasing sample size than for NNFI in lower N:q
conditions. This appeared to be due to the fact that average NNFI values in high
N:q conditions with small sample sizes were closer to their true value of 1.0 than
average NNFI values in low N:q conditions and small sample sizes.

Parameter Estimates

Because of the way N:q was manipulated in the current design, certain aspects of the
lambda estimates were not directly comparable across N:q conditions. Namely, the
variance among lambda estimates could not be analyzed because in the tau-equiva-
lentandparallel conditions, all lambdaestimateswereconstrained tobeequal.How-
ever, it was possible to compare the average bias in lambda estimates for the conge-
neric models with the bias in estimates for the tau-equivalent and parallel models.
Furthermore, since no restrictions were placed on the correlations among the latent
variables, both the bias and variance of phi estimates could be analyzed.

First, the average bias of lambda estimates was examined. Parameter bias was
measured by subtracting the true parameter value from the observed parameter es-
timate (or average parameter estimate in the case of the congeneric model) and di-
viding by the true value of the parameter. The average across the 20 measured vari-
ables for the congeneric condition was compared to the lambda estimates from the
tau-equivalent and parallel conditions. The results of analyzing the bias in lambda
estimates was that there was no practically significant effect for any of the inde-
pendent variables considered in this study or interactions among those independ-
ent variables. The effect for N:q came the closest to being practically significant
(ω2 = 0.012). This magnitude of effect corresponds to small differences in the third
decimal place of actual parameter estimates.

The fact that Phi estimates were not fixed in any way allowed for comparisons
across the three N:q conditions. Since the true population values for all of these pa-
rameters was set to 0.50, any consistent variation or bias would be due to the inde-
pendent variables, not differences in the true model parameters. There were no prac-
tically significant effects for phi parameter estimate bias. However, there were
practically significant effects for the variation in these parameter estimates, as mea-
sured by the standard deviation of the estimates for each model fitted, using only
those models with three or more factors. These practically significant effects were
sample size (ω2 = 0.304) and indicator reliability (ω2 = 0.033). The variation among
these parameter estimates was lower for the high indicator reliability condition, with
the high indicator reliability condition yielding factor correlation standard devia-
tions approximately 28% lower than low indicator reliability conditions. Addi-
tionally, smaller sample sizes were associated with greater variation in Phi parame-
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ter estimates. The standard deviation of the factor correlations in the largest sample
size (N = 800) was approximately four times smaller than in the smallest sample size
(N = 50). Mean standard deviation for the Phi estimates can be found in Table 4.

DISCUSSION

The current research was designed to study the effect of varying sample size rela-
tive to the number of estimated parameters on a confirmatory factor analysis solu-
tion. The design was similar to the one used by Jackson (2001), with an important
exception being that the N:q condition was varied more in this study. As an exam-
ple, consider the model with one factor and 20 indicators. In the congeneric condi-
tion, there were 40 parameters to be estimated, one for each factor to variable path
and one for the error variance associated with each manifest variable. At the other
extreme, the parallel condition, there were only two parameters to be estimated, a
single error variance and a single factor to variable path. This is because all factor
loadings were constrained to be equal and all error variances were constrained to
be equal. This meant that for the largest sample size (N = 800), in the congeneric
condition there was a ratio of 20 observations per parameter estimate and for the
parallel condition there were 20 times that many, or 400 observations per parame-
ter estimate. By contrast, the variability of the sample size independent variable
was less, with the largest condition being 16 times greater than the smallest condi-
tion (N = 50 being the smallest and N = 800 being the largest). Still, given this vari-
ability, N:q only had two practically significant effects, both on fit indexes, while
absolute sample size had more and greater practically significant effects.

This study found some support for the proposition that sample size be consid-
ered in terms of N:q. However, in the current design, sample size had a much more
profound effect although it varied less relative to N:q. The explanation for why N:q
had a practically significant effect on chi-square bias and RMSEA appears to have
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TABLE 4
Standard Deviations of Factor Correlation Estimates for Sample Size and

Indicator Reliability

Indicator Reliability

Sample Size 0.60 0.80 Total

50 0.140 0.099 0.120
100 0.095 0.070 0.082
200 0.066 0.048 0.057
400 0.047 0.033 0.040
800 0.033 0.024 0.028
Total 0.076 0.055 0.065



to do with the use of degrees of freedom in their calculation. Degrees of freedom
figures heavily in calculating chi-square bias and is taken into account in calculat-
ing RMSEA. An examination of the maximum likelihood fit statistic, on which
chi-square is based, revealed that the congeneric model actually had the best fit,
followed by the tau-equivalent and parallel models. This means that the added con-
straints of the tau-equivalent and parallel models served to deteriorate overall fit;
however, the increase in degrees of freedom more than offset this deterioration for
the two measures in question. This also explains why the effect of N:q on NNFI
and CI came close to achieving practical significance, as degrees of freedom is also
a component in their calculation. Because of the limitations of Monte Carlo simu-
lations, it is very much premature to conclude that conventional wisdom be com-
pletely overthrown with respect to the N:q hypothesis. Its merit, however, certainly
appears to be in need of more theoretical and empirical support. Furthermore, the
general advice of basing sample size on some minimum value (e.g., 200 or more
observations), ensuring indicators are carefully chosen and reliable, and ensuring
there are an adequate number of indicators per latent variable seemingly provide
more supportable guidelines for sample size than N:q (e.g., Anderson & Gerbing,
1984; Cohen, Cohen, & Velez, 1990; Gerbing & Anderson, 1985; Jackson, 2001).

More generally, however, it is important that the question of what is an appro-
priate sample size be further investigated. Structural equation modeling is based on
asymptotic statistical theory. If certain assumptions are met and the sample size is
large enough, statistical tests and parameter estimates can be trusted. Unfortu-
nately, there is no easy number one can substitute for the phrase “large enough.”
Some rules of thumb appear to be in use; for example, 100 to 200 observations is a
medium sample size (Kline, 1998). However, the N:q hypothesis appears to be a
manifestation of an underlying assumption that sample size perhaps shouldn’t be
thought of in an absolute sense. Rather, features of a model, which the researcher is
testing, should moderate this figure.

The problem, at this point, represents more than an esoteric argument over how
best to conduct CSM. Researchers must justify their sample size when submitting
their work to conferences or journals for presentation or publication. The
practicalities and expense of obtaining a “large enough” sample come into play in
the research design. Additionally, editors and reviewers must consider the research
design when evaluating a manuscript for publication. This, naturally, includes
making a judgement about the adequacy of the sample size. In short, firmer guide-
lines on sample size would be welcomed by researchers and reviewers alike.

In summary, this article describes research aimed at discovering support for the
often-cited assertion that the appropriate sample size should be considered in light
of the number of parameters being estimated. Some support was found for this as-
sertion. Most notably, in conditions with higher N:q ratios, on average chi-square
bias and RMSEA values were lower. Additionally, other fit indexes demonstrated a
tendency to be impacted by N:q. Namely, NNFI and CI values were, on average,
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larger with higher N:q ratios. The effect size for the latter two, however, was not as
great as it was for chi-square bias and RMSEA. Given that this study offers some
support for the N:q hypothesis, future research should be directed at better under-
standing these effects under varying conditions such as under different levels of
approximation error or in testing models with structural parameters. Furthermore,
research aimed at disentangling the relative impact of sample size, reliability of in-
dicators, number of indicators per latent variable, N:q, and other determinants of
model solutions over a variety of modeling conditions seems warranted.
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