
Part 2: Meta-Analysis (Summarizing the Data)



 An effect size quantifies the magnitude of the 
relationship among variables

◦ For example, let’s say we are comparing 10 boys and 10 
girls on reading speed

 Boys: M = 36, SD = 7
 Girls: M = 29, SD = 6

 Unstandardized Effect Size
◦ Mdiff = MBoys – Mgirls = 36 – 29 = 7

◦ This is interpretable if the units are interpretable (e.g., if 
reading speed was measured in seconds or minutes)



 Standardized Effect Size
◦ E.g., Cohen’s d
 Quantifies differences in means in ‘standard deviation’ units

◦ 𝑑𝑑 = 𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵

𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−1 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
2 + 𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵−1 𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵

2

𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵+𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵−2

= 36−29
10−1 72+(10−1)62

10+10−2

= 1.07

◦ Thus, boys and girls differ by a little more than one SD

◦ This is interpretable regardless of the units of measurement, and 
is comparable across studies which use different scales, 
measures, etc.
 Which will obviously be useful in meta-analysis



 Example 2: Correlation between income and depression

 r = .24

◦ Increasing income by one standard deviation is, on average, 
associated with a .24 increase in depression

 Since correlation values are inherently standardized 
(range from -1 to 1), we would almost always adopt a 
standardized metric to explore the correlation among 
variables



 Confidence Interval (CI)
◦ A range of values over which we expect the true (population) parameter to fall
◦ E.g., 95% CI
 If we sampled repeatedly from the population and calculated a CI for each effect 

size from each sample, 95% of the CIs would contain the population parameter

◦ Importance of Confidence Intervals
 CIs provide information regarding measurement precision
 E.g. 1: d = .28; 95% CI = {.27, .29}
 E.g. 2: d = .28; 95% CI = {.15, .41}

 The second CI measures the effect of interest much less precisely, even though the 
effect size is the same

◦ In general, studies with larger sample sizes have narrower CIs 



 Effect size is the Outcome/Dependent Variable

◦ This will require the computation of effect sizes or transforming 
from one effect size to another

◦ Standardized effect sizes are almost always used in meta-analysis
 A standardized index must be comparable across studies, 

represent the magnitude and direction of the relationship of 
interest, and be independent of sample size

◦ It is also possible to use unstandardized effect sizes, but this 
requires that the exact same scales/variables are used in each 
study (and that no transformations, modifications, etc. were made 
to any variables)



 Note that in some testing situations it might be tricky to 
obtain a proper effect size estimate

◦ Take, for example, a study that looks at the  difference between 
boys and girls in vocabulary development over 6 months from 18 
months to 24 months using a repeated measures analysis

 Typical methods that convert t/z statistics to d will be 
incorrect for repeated measures studies, and corrections 
need to be applied in order to minimize bias



 A visual representation of effect sizes (and confidence intervals for 
the effect sizes) from multiple studies included in a meta-analysis
◦ Recall: all effects must be measured in the same metric (e.g., d,  correlation)

 The area of the effect size icons (usually squares) on the plot 
indicates the “weight” of the study to the combined effect
◦ E.g., larger N studies have a higher weight

 The plot also shows the combined effect size, and confidence 
interval for the effect size, across studies



These studies contribute more to 
the combined effect; note the 

narrow CIs (and likely large Ns)



 There are two popular models available for conducting a meta-
analysis
 In other words, two models available for arriving at a “combined” measure of effect 

size

◦ Fixed Effects Model
 Assumes that all the studies investigated the same population, and therefore 

estimate the same population effect size
 Highly questionable

◦ Random Effects Model
 Allows for the possibility that the studies investigated somewhat different 

populations, and therefore estimate different population effect sizes
 Another way to say this is that we expect some “true” variability in effect sizes



 It is difficult to imagine a setting in which multiple studies 
conducted in different locations, with different samples, and 
with potentially different measures are all studying the same 
population (and thus are after a single population effect size)

 The random effects model is more realistic and provides a 
basis for understanding the heterogeneity of effect sizes
◦ Further, the models give the same answer if there is only a single 

population, so it is hard to find a reason for a researcher to prefer a 
fixed effects model



Fixed Effects Model
𝐺𝐺𝑖𝑖 = θ + ε𝑖𝑖

Random Effects Model
𝐺𝐺𝑖𝑖 = μ + ζ𝑖𝑖 + ε𝑖𝑖



 For a set of S effect size measures (γ)

◦ �γ𝐹𝐹 = ∑𝐺𝐺=1
𝑆𝑆 𝑤𝑤𝐺𝐺�γ𝐺𝐺
∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

◦ 𝑤𝑤𝑖𝑖 = 1
𝑠𝑠2 �γ𝐺𝐺

◦ 𝑠𝑠2 �γ𝐹𝐹 = 1
∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

This info is used to 
generate a mean effect 

size and a CI around the 
mean effect size



 Study 1: M1 = 12, M2 = 14, SD1 = 3, SD2 = 3, n1 = 22, n2 = 32
 Study 2: M1 = 14, M2 = 16, SD1 = 2, SD2 = 2, n1 = 25, n2 = 52
 Study 3: M1 = 11, M2 = 13, SD1 = 4, SD2 = 4, n1 = 142, n2 = 128

 Cohen’s d Values
◦ 𝑑𝑑 = 𝑀𝑀1−𝑀𝑀2

𝑛𝑛1−1 𝑆𝑆𝑆𝑆1
2+ 𝑛𝑛2−1 𝑆𝑆𝑆𝑆𝐵𝐵2

𝑛𝑛1+𝑛𝑛2−2

◦ 𝑑𝑑1 = 𝑀𝑀1−𝑀𝑀2

𝑛𝑛1−1 𝑆𝑆𝑆𝑆1
2+ 𝑛𝑛2−1 𝑆𝑆𝑆𝑆𝐵𝐵2

𝑛𝑛1+𝑛𝑛2−2

= 12−14
22−1 32+ 32−1 32

22+32−2

= −.67

◦ 𝑑𝑑2 = 𝑀𝑀1−𝑀𝑀2

𝑛𝑛1−1 𝑆𝑆𝑆𝑆1
2+ 𝑛𝑛2−1 𝑆𝑆𝑆𝑆𝐵𝐵2

𝑛𝑛1+𝑛𝑛2−2

= 14−16
25−1 22+ 52−1 22

25+52−2

= −1.00

◦ 𝑑𝑑3 = 𝑀𝑀1−𝑀𝑀2

𝑛𝑛1−1 𝑆𝑆𝑆𝑆1
2+ 𝑛𝑛2−1 𝑆𝑆𝑆𝑆𝐵𝐵2

𝑛𝑛1+𝑛𝑛2−2

= 11−13
142−1 42+ 128−1 42

142+128−2

= −.50



 Study 1: M1 = 12, M2 = 14, SD1 = 3, SD2 = 3, n1 = 22, n2 = 32
 Study 2: M1 = 14, M2 = 16, SD1 = 2, SD2 = 2, n1 = 25, n2 = 52
 Study 3: M1 = 11, M2 = 13, SD1 = 4, SD2 = 4, n1 = 142, n2 = 128

 Variances of the d values
◦ 𝑠𝑠2 𝑑𝑑 = 𝑛𝑛1+𝑛𝑛2

𝑛𝑛1𝑛𝑛2
+ 𝑑𝑑2

2 𝑛𝑛1+𝑛𝑛2−2

◦ 𝑠𝑠2 𝑑𝑑1 = 𝑛𝑛1+𝑛𝑛2
𝑛𝑛1𝑛𝑛2

+ 𝑑𝑑2

2 𝑛𝑛1+𝑛𝑛2−2
= 22+32

(22)(32)
+ −.672

2 22+32−2
= .085

◦ 𝑠𝑠2 𝑑𝑑2 = 𝑛𝑛1+𝑛𝑛2
𝑛𝑛1𝑛𝑛2

+ 𝑑𝑑2

2 𝑛𝑛1+𝑛𝑛2−2
= 25+52

(25)(52)
+ −1.002

2 25+52−2
= .073

◦ 𝑠𝑠2 𝑑𝑑3 = 𝑛𝑛1+𝑛𝑛2
𝑛𝑛1𝑛𝑛2

+ 𝑑𝑑2

2 𝑛𝑛1+𝑛𝑛2−2
= 142+128

(142)(128)
+ −.502

2 142+128−2
= .016

Notice that the study with 
the smallest variance for 
its associated effect size 

has the largest N



 Study 1: M1 = 12, M2 = 14, SD1 = 3, SD2 = 3, n1 = 22, n2 = 32
 Study 2: M1 = 14, M2 = 16, SD1 = 2, SD2 = 2, n1 = 25, n2 = 52
 Study 3: M1 = 11, M2 = 13, SD1 = 4, SD2 = 4, n1 = 142, n2 = 128

 Weights
◦ 𝑤𝑤 = 1

𝑠𝑠2 𝑑𝑑

◦ 𝑤𝑤1 = 1
𝑠𝑠2 𝑑𝑑

= 1
.085

= 11.73

◦ 𝑤𝑤2 = 1
𝑠𝑠2 𝑑𝑑

= 1
.073

= 13.78

◦ 𝑤𝑤3 = 1
𝑠𝑠2 𝑑𝑑

= 1
.016

= 63.34

Notice that the study with the 
largest weight for its associated 

effect size has the smallest 
variance/largest N



 �γ𝐹𝐹 = ∑𝐺𝐺=1
𝑆𝑆 𝑤𝑤𝐺𝐺�γ𝐺𝐺
∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

= 11.73 −.67 + 13.78 −1.00 +(63.34)(−.5)
11.73+13.78+63.34

= −.60

 𝑠𝑠2 �γ𝐹𝐹 = 1
∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

= 1
11.73+13.78+63.34

= .011

 SE �γ𝐹𝐹 = 𝑠𝑠2 �γ𝐹𝐹 = .011 = .10

 95%CI �γ𝐹𝐹 = �γ𝐹𝐹 ± 1.96 SE �γ𝐹𝐹 =
−.60 − 1.96 ∗ .10 , −.60 + 1.96 ∗ .10 = −.80,−.40



 Note: You are not going to be doing any of these “hand 
calculations” yourself
◦ All of the calculations will be done using software

 The example was simply to provide you with an idea of how 
the process of meta-analysis is carried out “behind-the-
scenes”



 For a set of S effect size measures (γ)

◦ �γ𝑅𝑅 = ∑𝐺𝐺=1
𝑆𝑆 𝑤𝑤𝐺𝐺

∗ �γ𝐺𝐺
∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

∗

◦ 𝑤𝑤𝑖𝑖∗ = 1
𝑠𝑠2 �γ𝐺𝐺 +τ2

◦ τ2 = 𝑄𝑄− 𝑆𝑆−1

∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺−

∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

2

∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

for Q > S-1

◦ 𝑄𝑄 = ∑𝑖𝑖=𝑖𝑖𝑆𝑆 𝑤𝑤𝑖𝑖 �γ𝑖𝑖 − �γ𝐹𝐹 2

◦ 𝑠𝑠2 �γ𝑅𝑅 = 1
∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

∗

Weights are more 
similar across studies 
given the addition of 

the constant τ2



 A simple goodness-of-fit test can be used to test for 
excessive heterogeneity
◦ Q  ~ 𝜒𝜒𝑑𝑑𝑑𝑑=𝑆𝑆−12

 We computed Q on the previous slide
 We reject the null that there is no population heterogeneity if Q ≥ 𝜒𝜒α,𝑑𝑑𝑑𝑑=𝑆𝑆−1

2

 The problem with this approach is that the test has low-power 
when S is small



 A better approach to quantifying heterogeneity is to use an effect 
size measure

𝐼𝐼2 =
𝑄𝑄 − 𝑆𝑆 + 1

𝑄𝑄

 Tells us what proportion of the observed variance in effect sizes is 
due to true differences in effect sizes, rather than sampling error

 𝐼𝐼2 ranges from 0 to 1, with larger values indicating more 
heterogeneity



 There are different ways of assessing the effect of outliers, 
but the main issue relates to what effect each study has on 
the combined effect size

 The easiest way to observe the effect of outliers is through 
“leave-one-out” analyses
◦ Cook’s distance
 A measure of the influence of individual cases on the combined effect
 Popular cutoff is 4/(Number of Studies)

◦ Plot the combined effect, as a function of which study is left out



Individual Studies go on the 
X-axis, here studies 1-10

Combined 
Effect Size



 When there is publication bias (e.g., studies with statistically 
significant effects getting published), studies with small 
sample sizes tend to have large effects
◦ A large effect size is needed for an effect based on a small N to be 

statistically significant
 If we plot effect sizes against sample size/standard error, 

publication bias would show up in terms of “asymmetry”
◦ Small N studies would all tend to have large effects

 This plot is called a funnel plot





 Focuses on effect sizes, not statistical significance

 Combines multiple studies for a more precise estimate 
of the effect size

 Provides a rationale for small-N research
◦ I.e., the results will be combined with other studies for a more 

precise estimate of the effect size
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