A Hands on Introduction to Systematic Reviews and Meta-Analysis

Part 2: Meta-Analysis (Summarizing the Data)

Effect Size

- An *effect size* quantifies the magnitude of the relationship among variables
 - For example, let's say we are comparing 10 boys and 10 girls on reading speed
 - Boys: M = 36, SD = 7
 - Girls: M = 29, SD = 6
- Unstandardized Effect Size
 M_{diff} = M_{Bovs} M_{airls} = 36 29 = 7
 - This is interpretable if the units are interpretable (e.g., if reading speed was measured in seconds or minutes)

Effect Size

- Standardized Effect Size
 - E.g., Cohen's d
 - Quantifies differences in means in 'standard deviation' units

$$\circ d = \frac{M_{Boys} - M_{Girls}}{\sqrt{\frac{(n_{Boys} - 1)SD_{Boys}^{2} + (n_{Girls} - 1)SD_{Girls}^{2}}{n_{Boys} + n_{Girls} - 2}}} = \frac{36 - 29}{\sqrt{\frac{(10 - 1)7^{2} + (10 - 1)6^{2}}{10 + 10 - 2}}} = 1.07$$

- Thus, boys and girls differ by a little more than one SD
- This is interpretable regardless of the units of measurement, and is comparable across studies which use different scales, measures, etc.
 - Which will obviously be useful in meta-analysis

Effect Size

- Example 2: Correlation between income and depression
- *r* = .24 ►
 - Increasing income by one standard deviation is, on average, associated with a .24 increase in depression
- Since correlation values are inherently standardized (range from -1 to 1), we would almost always adopt a standardized metric to explore the correlation among variables

Confidence Intervals for Effect Sizes

Confidence Interval (CI)

- A range of values over which we expect the true (population) parameter to fall
- E.g., 95% Cl
 - If we sampled repeatedly from the population and calculated a CI for each effect size from each sample, 95% of the CIs would contain the population parameter
- Importance of Confidence Intervals
 - Cls provide information regarding measurement precision
 - E.g. 1: *d* = .28; 95% CI = {.27, .29}
 - E.g. 2: *d* = .28; 95% CI = {.15, .41}
 - The second CI measures the effect of interest much less precisely, even though the effect size is the same
- In general, studies with larger sample sizes have narrower CIs

Effect Size in Meta-Analysis

- Effect size is the Outcome/Dependent Variable
 - This will require the computation of effect sizes or transforming from one effect size to another
 - Standardized effect sizes are almost always used in meta-analysis
 - A standardized index must be comparable across studies, represent the magnitude and direction of the relationship of interest, and be independent of sample size
 - It is also possible to use unstandardized effect sizes, but this requires that the exact same scales/variables are used in each study (and that no transformations, modifications, etc. were made to any variables)

Effect Size in Meta-Analysis

- Note that in some testing situations it might be tricky to obtain a proper effect size estimate
 - Take, for example, a study that looks at the difference between boys and girls in vocabulary development over 6 months from 18 months to 24 months using a repeated measures analysis
- Typical methods that convert t/z statistics to d will be incorrect for repeated measures studies, and corrections need to be applied in order to minimize bias

Forest Plot

- A visual representation of effect sizes (and confidence intervals for the effect sizes) from multiple studies included in a meta-analysis
 Recall: all effects must be measured in the same metric (e.g., *d*, correlation)
- The area of the effect size icons (usually squares) on the plot indicates the "weight" of the study to the combined effect
 E.g., larger N studies have a higher weight
- The plot also shows the *combined* effect size, and confidence interval for the effect size, across studies

Statistical Models

- There are two popular models available for conducting a metaanalysis
 - In other words, two models available for arriving at a "combined" measure of effect size
 - Fixed Effects Model
 - Assumes that all the studies investigated the same population, and therefore estimate the same population effect size
 - Highly questionable
 - Random Effects Model
 - Allows for the possibility that the studies investigated somewhat different populations, and therefore estimate different population effect sizes
 - Another way to say this is that we expect some "true" variability in effect sizes

Fixed Effects vs Random Effects

- It is difficult to imagine a setting in which multiple studies conducted in different locations, with different samples, and with potentially different measures are all studying the same population (and thus are after a single population effect size)
- The random effects model is more realistic and provides a basis for understanding the heterogeneity of effect sizes
 Further, the models give the same answer if there is only a single population, so it is hard to find a reason for a researcher to prefer a fixed effects model

Fixed Effects vs Random Effects

Fixed Effects Model $G_i = \theta + \varepsilon_i$ Random Effects Model $G_i = \mu + \zeta_i + \varepsilon_i$

Fixed Effects Meta-Analysis

For a set of S effect size measures (γ)

•
$$\widehat{\mathbf{Y}}_F = \frac{\sum_{i=1}^S w_i \widehat{\mathbf{Y}}_i}{\sum_{i=i}^S w_i}$$

• $w_i = \frac{1}{s^2(\widehat{\mathbf{Y}}_i)}$

This info is used to generate a mean effect size and a CI around the mean effect size

•
$$s^2(\widehat{\mathbf{Y}}_F) = \frac{1}{\sum_{i=i}^S w_i}$$

- > Study 1: $M_1 = 12$, $M_2 = 14$, $SD_1 = 3$, $SD_2 = 3$, $n_1 = 22$, $n_2 = 32$
- Study 2: $M_1 = 14$, $M_2 = 16$, $SD_1 = 2$, $SD_2 = 2$, $n_1 = 25$, $n_2 = 52$
- Study 3: $M_1 = 11$, $M_2 = 13$, $SD_1 = 4$, $SD_2 = 4$, $n_1 = 142$, $n_2 = 128$
- Cohen's d Values

- Study 1: $M_1 = 12$, $M_2 = 14$, $SD_1 = 3$, $SD_2 = 3$, $n_1 = 22$, $n_2 = 32$
- Study 2: $M_1 = 14$, $M_2 = 16$, $SD_1 = 2$, $SD_2 = 2$, $n_1 = 25$, $n_2 = 52$ Study 3: $M_1 = 11$, $M_2 = 13$, $SD_1 = 4$, $SD_2 = 4$, $n_1 = 142$, $n_2 = 128$
- Variances of the *d* values

•
$$s^{2}(d) = \frac{n_{1}+n_{2}}{n_{1}n_{2}} + \frac{d^{2}}{2(n_{1}+n_{2}-2)}$$

• $s^{2}(d_{1}) = \frac{n_{1}+n_{2}}{n_{1}n_{2}} + \frac{d^{2}}{2(n_{1}+n_{2}-2)} = \frac{22+32}{(22)(32)} + \frac{-.67^{2}}{2(22+32-2)} = .085$

Notice that the study with the smallest variance for its associated effect size has the largest N

•
$$s^{2}(d_{2}) = \frac{n_{1}+n_{2}}{n_{1}n_{2}} + \frac{d^{2}}{2(n_{1}+n_{2}-2)} = \frac{25+52}{(25)(52)} + \frac{-1.00^{2}}{2(25+52-2)} = .073$$

• $s^{2}(d_{3}) = \frac{n_{1}+n_{2}}{n_{1}n_{2}} + \frac{d^{2}}{2(n_{1}+n_{2}-2)} = \frac{142+128}{(142)(128)} + \frac{-.50^{2}}{2(142+128-2)} = .016$

- Study 1: M₁ = 12, M₂ = 14, SD₁ = 3, SD₂ = 3, n₁ = 22, n₂ = 32
 Study 2: M₁ = 14, M₂ = 16, SD₁ = 2, SD₂ = 2, n₁ = 25, n₂ = 52
 Study 3: M₁ = 11, M₂ = 13, SD₁ = 4, SD₂ = 4, n₁ = 142, n₂ = 128
- Weights
 - $w = \frac{1}{s^2(d)}$ • $w_1 = \frac{1}{s^2(d)} = \frac{1}{.085} = 11.73$ • $w_2 = \frac{1}{s^2(d)} = \frac{1}{.073} = 13.78$ • $w_3 = \frac{1}{s^2(d)} = \frac{1}{.016} = 63.34$

Notice that the study with the largest weight for its associated effect size has the smallest variance/largest N

$$\widehat{\mathbf{Y}}_F = \frac{\sum_{i=1}^S w_i \widehat{\mathbf{Y}}_i}{\sum_{i=i}^S w_i} = \frac{(11.73)(-.67) + (13.78)(-1.00) + (63.34)(-.5)}{11.73 + 13.78 + 63.34} = -.60$$

•
$$s^2(\widehat{\gamma}_F) = \frac{1}{\sum_{i=i}^S w_i} = \frac{1}{11.73 + 13.78 + 63.34} = .011$$

•
$$SE(\widehat{\gamma}_F) = \sqrt{s^2(\widehat{\gamma}_F)} = \sqrt{.011} = .10$$

► 95%Cl($\hat{\gamma}_F$) = $\hat{\gamma}_F \pm (1.96)$ SE($\hat{\gamma}_F$) = {(-.60 - 1.96 * .10), (-.60 + 1.96 * .10)} = {-.80, -.40}

- Note: You are not going to be doing any of these "hand calculations" yourself
 - All of the calculations will be done using software
- The example was simply to provide you with an idea of how the process of meta-analysis is carried out "behind-thescenes"

Random Effects Meta-Analysis

For a set of S effect size measures (γ)

$$\widehat{\mathbf{Y}}_{R} = \frac{\sum_{i=1}^{S} w_{i}^{*} \widehat{\mathbf{Y}}_{i}}{\sum_{i=i}^{S} w_{i}^{*}}$$

$$w_{i}^{*} = \frac{1}{s^{2}(\widehat{\mathbf{Y}}_{i}) + \tau^{2}}$$

$$\tau^{2} = \frac{Q - (S - 1)}{\sum_{i=i}^{S} w_{i} - \frac{\sum_{i=i}^{S} w_{i}^{2}}{\sum_{i=i}^{S} w_{i}}} \text{ for } \mathbf{Q} > S - 1$$

$$Q = \sum_{i=i}^{S} w_{i} (\widehat{\mathbf{Y}}_{i} - \widehat{\mathbf{Y}}_{F})^{2}$$

$$s^{2}(\widehat{\mathbf{Y}}_{R}) = \frac{1}{\sum_{i=i}^{S} w_{i}^{*}}$$

Weights are more similar across studies given the addition of the constant τ^2

Heterogeneity of Effect Sizes

- A simple goodness-of-fit test can be used to test for excessive heterogeneity
 - $\circ \ \mathsf{Q} \ \sim \chi^2_{df=S-1}$
 - We computed Q on the previous slide
 - We reject the null that there is no population heterogeneity if $Q \ge \chi^2_{\alpha,df=S-1}$
- The problem with this approach is that the test has low-power when S is small

Heterogeneity of Effect Sizes

A better approach to quantifying heterogeneity is to use an effect size measure

$$I^2 = \frac{Q - S + 1}{Q}$$

- Tells us what proportion of the observed variance in effect sizes is due to true differences in effect sizes, rather than sampling error
- I² ranges from 0 to 1, with larger values indicating more heterogeneity

Outliers (Influential Cases)

- There are different ways of assessing the effect of outliers, but the main issue relates to what effect each study has on the combined effect size
- The easiest way to observe the effect of outliers is through "leave-one-out" analyses
 - Cook's distance
 - A measure of the influence of individual cases on the combined effect
 - Popular cutoff is 4/(Number of Studies)
 - Plot the combined effect, as a function of which study is left out

Plot of "Leave-One-Out" Analyses

Publication Bias

- When there is publication bias (e.g., studies with statistically significant effects getting published), studies with small sample sizes tend to have large effects
 - A large effect size is needed for an effect based on a small N to be statistically significant
- If we plot effect sizes against sample size/standard error, publication bias would show up in terms of "asymmetry"
 - Small N studies would all tend to have large effects
- This plot is called a *funnel plot*

Funnel Plot: Which Shows Evidence of Publication Bias?

Conclusion: Why Meta-Analysis?

- Focuses on effect sizes, not statistical significance
- Combines multiple studies for a more precise estimate of the effect size
- Provides a rationale for small-N research
 I.e., the results will be combined with other studies for a more
 - precise estimate of the effect size