
Part 2: Meta-Analysis (Summarizing the Data)



 An effect size quantifies the magnitude of the 
relationship among variables

◦ For example, let’s say we are comparing 10 boys and 10 
girls on reading speed

 Boys: M = 36, SD = 7
 Girls: M = 29, SD = 6

 Unstandardized Effect Size
◦ Mdiff = MBoys – Mgirls = 36 – 29 = 7

◦ This is interpretable if the units are interpretable (e.g., if 
reading speed was measured in seconds or minutes)



 Standardized Effect Size
◦ E.g., Cohen’s d
 Quantifies differences in means in ‘standard deviation’ units

◦ 𝑑𝑑 = 𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵

𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−1 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
2 + 𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵−1 𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵

2

𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵+𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵−2

= 36−29
10−1 72+(10−1)62

10+10−2

= 1.07

◦ Thus, boys and girls differ by a little more than one SD

◦ This is interpretable regardless of the units of measurement, and 
is comparable across studies which use different scales, 
measures, etc.
 Which will obviously be useful in meta-analysis



 Example 2: Correlation between income and depression

 r = .24

◦ Increasing income by one standard deviation is, on average, 
associated with a .24 increase in depression

 Since correlation values are inherently standardized 
(range from -1 to 1), we would almost always adopt a 
standardized metric to explore the correlation among 
variables



 Confidence Interval (CI)
◦ A range of values over which we expect the true (population) parameter to fall
◦ E.g., 95% CI
 If we sampled repeatedly from the population and calculated a CI for each effect 

size from each sample, 95% of the CIs would contain the population parameter

◦ Importance of Confidence Intervals
 CIs provide information regarding measurement precision
 E.g. 1: d = .28; 95% CI = {.27, .29}
 E.g. 2: d = .28; 95% CI = {.15, .41}

 The second CI measures the effect of interest much less precisely, even though the 
effect size is the same

◦ In general, studies with larger sample sizes have narrower CIs 



 Effect size is the Outcome/Dependent Variable

◦ This will require the computation of effect sizes or transforming 
from one effect size to another

◦ Standardized effect sizes are almost always used in meta-analysis
 A standardized index must be comparable across studies, 

represent the magnitude and direction of the relationship of 
interest, and be independent of sample size

◦ It is also possible to use unstandardized effect sizes, but this 
requires that the exact same scales/variables are used in each 
study (and that no transformations, modifications, etc. were made 
to any variables)



 Note that in some testing situations it might be tricky to 
obtain a proper effect size estimate

◦ Take, for example, a study that looks at the  difference between 
boys and girls in vocabulary development over 6 months from 18 
months to 24 months using a repeated measures analysis

 Typical methods that convert t/z statistics to d will be 
incorrect for repeated measures studies, and corrections 
need to be applied in order to minimize bias



 A visual representation of effect sizes (and confidence intervals for 
the effect sizes) from multiple studies included in a meta-analysis
◦ Recall: all effects must be measured in the same metric (e.g., d,  correlation)

 The area of the effect size icons (usually squares) on the plot 
indicates the “weight” of the study to the combined effect
◦ E.g., larger N studies have a higher weight

 The plot also shows the combined effect size, and confidence 
interval for the effect size, across studies



These studies contribute more to 
the combined effect; note the 

narrow CIs (and likely large Ns)



 There are two popular models available for conducting a meta-
analysis
 In other words, two models available for arriving at a “combined” measure of effect 

size

◦ Fixed Effects Model
 Assumes that all the studies investigated the same population, and therefore 

estimate the same population effect size
 Highly questionable

◦ Random Effects Model
 Allows for the possibility that the studies investigated somewhat different 

populations, and therefore estimate different population effect sizes
 Another way to say this is that we expect some “true” variability in effect sizes



 It is difficult to imagine a setting in which multiple studies 
conducted in different locations, with different samples, and 
with potentially different measures are all studying the same 
population (and thus are after a single population effect size)

 The random effects model is more realistic and provides a 
basis for understanding the heterogeneity of effect sizes
◦ Further, the models give the same answer if there is only a single 

population, so it is hard to find a reason for a researcher to prefer a 
fixed effects model



Fixed Effects Model
𝐺𝐺𝑖𝑖 = θ + ε𝑖𝑖

Random Effects Model
𝐺𝐺𝑖𝑖 = μ + ζ𝑖𝑖 + ε𝑖𝑖



 For a set of S effect size measures (γ)

◦ �γ𝐹𝐹 = ∑𝐺𝐺=1
𝑆𝑆 𝑤𝑤𝐺𝐺�γ𝐺𝐺
∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

◦ 𝑤𝑤𝑖𝑖 = 1
𝑠𝑠2 �γ𝐺𝐺

◦ 𝑠𝑠2 �γ𝐹𝐹 = 1
∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

This info is used to 
generate a mean effect 

size and a CI around the 
mean effect size



 Study 1: M1 = 12, M2 = 14, SD1 = 3, SD2 = 3, n1 = 22, n2 = 32
 Study 2: M1 = 14, M2 = 16, SD1 = 2, SD2 = 2, n1 = 25, n2 = 52
 Study 3: M1 = 11, M2 = 13, SD1 = 4, SD2 = 4, n1 = 142, n2 = 128

 Cohen’s d Values
◦ 𝑑𝑑 = 𝑀𝑀1−𝑀𝑀2

𝑛𝑛1−1 𝑆𝑆𝑆𝑆1
2+ 𝑛𝑛2−1 𝑆𝑆𝑆𝑆𝐵𝐵2

𝑛𝑛1+𝑛𝑛2−2

◦ 𝑑𝑑1 = 𝑀𝑀1−𝑀𝑀2

𝑛𝑛1−1 𝑆𝑆𝑆𝑆1
2+ 𝑛𝑛2−1 𝑆𝑆𝑆𝑆𝐵𝐵2

𝑛𝑛1+𝑛𝑛2−2

= 12−14
22−1 32+ 32−1 32

22+32−2

= −.67

◦ 𝑑𝑑2 = 𝑀𝑀1−𝑀𝑀2

𝑛𝑛1−1 𝑆𝑆𝑆𝑆1
2+ 𝑛𝑛2−1 𝑆𝑆𝑆𝑆𝐵𝐵2

𝑛𝑛1+𝑛𝑛2−2

= 14−16
25−1 22+ 52−1 22

25+52−2

= −1.00

◦ 𝑑𝑑3 = 𝑀𝑀1−𝑀𝑀2

𝑛𝑛1−1 𝑆𝑆𝑆𝑆1
2+ 𝑛𝑛2−1 𝑆𝑆𝑆𝑆𝐵𝐵2

𝑛𝑛1+𝑛𝑛2−2

= 11−13
142−1 42+ 128−1 42

142+128−2

= −.50



 Study 1: M1 = 12, M2 = 14, SD1 = 3, SD2 = 3, n1 = 22, n2 = 32
 Study 2: M1 = 14, M2 = 16, SD1 = 2, SD2 = 2, n1 = 25, n2 = 52
 Study 3: M1 = 11, M2 = 13, SD1 = 4, SD2 = 4, n1 = 142, n2 = 128

 Variances of the d values
◦ 𝑠𝑠2 𝑑𝑑 = 𝑛𝑛1+𝑛𝑛2

𝑛𝑛1𝑛𝑛2
+ 𝑑𝑑2

2 𝑛𝑛1+𝑛𝑛2−2

◦ 𝑠𝑠2 𝑑𝑑1 = 𝑛𝑛1+𝑛𝑛2
𝑛𝑛1𝑛𝑛2

+ 𝑑𝑑2

2 𝑛𝑛1+𝑛𝑛2−2
= 22+32

(22)(32)
+ −.672

2 22+32−2
= .085

◦ 𝑠𝑠2 𝑑𝑑2 = 𝑛𝑛1+𝑛𝑛2
𝑛𝑛1𝑛𝑛2

+ 𝑑𝑑2

2 𝑛𝑛1+𝑛𝑛2−2
= 25+52

(25)(52)
+ −1.002

2 25+52−2
= .073

◦ 𝑠𝑠2 𝑑𝑑3 = 𝑛𝑛1+𝑛𝑛2
𝑛𝑛1𝑛𝑛2

+ 𝑑𝑑2

2 𝑛𝑛1+𝑛𝑛2−2
= 142+128

(142)(128)
+ −.502

2 142+128−2
= .016

Notice that the study with 
the smallest variance for 
its associated effect size 

has the largest N



 Study 1: M1 = 12, M2 = 14, SD1 = 3, SD2 = 3, n1 = 22, n2 = 32
 Study 2: M1 = 14, M2 = 16, SD1 = 2, SD2 = 2, n1 = 25, n2 = 52
 Study 3: M1 = 11, M2 = 13, SD1 = 4, SD2 = 4, n1 = 142, n2 = 128

 Weights
◦ 𝑤𝑤 = 1

𝑠𝑠2 𝑑𝑑

◦ 𝑤𝑤1 = 1
𝑠𝑠2 𝑑𝑑

= 1
.085

= 11.73

◦ 𝑤𝑤2 = 1
𝑠𝑠2 𝑑𝑑

= 1
.073

= 13.78

◦ 𝑤𝑤3 = 1
𝑠𝑠2 𝑑𝑑

= 1
.016

= 63.34

Notice that the study with the 
largest weight for its associated 

effect size has the smallest 
variance/largest N



 �γ𝐹𝐹 = ∑𝐺𝐺=1
𝑆𝑆 𝑤𝑤𝐺𝐺�γ𝐺𝐺
∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

= 11.73 −.67 + 13.78 −1.00 +(63.34)(−.5)
11.73+13.78+63.34

= −.60

 𝑠𝑠2 �γ𝐹𝐹 = 1
∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

= 1
11.73+13.78+63.34

= .011

 SE �γ𝐹𝐹 = 𝑠𝑠2 �γ𝐹𝐹 = .011 = .10

 95%CI �γ𝐹𝐹 = �γ𝐹𝐹 ± 1.96 SE �γ𝐹𝐹 =
−.60 − 1.96 ∗ .10 , −.60 + 1.96 ∗ .10 = −.80,−.40



 Note: You are not going to be doing any of these “hand 
calculations” yourself
◦ All of the calculations will be done using software

 The example was simply to provide you with an idea of how 
the process of meta-analysis is carried out “behind-the-
scenes”



 For a set of S effect size measures (γ)

◦ �γ𝑅𝑅 = ∑𝐺𝐺=1
𝑆𝑆 𝑤𝑤𝐺𝐺

∗ �γ𝐺𝐺
∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

∗

◦ 𝑤𝑤𝑖𝑖∗ = 1
𝑠𝑠2 �γ𝐺𝐺 +τ2

◦ τ2 = 𝑄𝑄− 𝑆𝑆−1

∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺−

∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

2

∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

for Q > S-1

◦ 𝑄𝑄 = ∑𝑖𝑖=𝑖𝑖𝑆𝑆 𝑤𝑤𝑖𝑖 �γ𝑖𝑖 − �γ𝐹𝐹 2

◦ 𝑠𝑠2 �γ𝑅𝑅 = 1
∑𝐺𝐺=𝐺𝐺
𝑆𝑆 𝑤𝑤𝐺𝐺

∗

Weights are more 
similar across studies 
given the addition of 

the constant τ2



 A simple goodness-of-fit test can be used to test for 
excessive heterogeneity
◦ Q  ~ 𝜒𝜒𝑑𝑑𝑑𝑑=𝑆𝑆−12

 We computed Q on the previous slide
 We reject the null that there is no population heterogeneity if Q ≥ 𝜒𝜒α,𝑑𝑑𝑑𝑑=𝑆𝑆−1

2

 The problem with this approach is that the test has low-power 
when S is small



 A better approach to quantifying heterogeneity is to use an effect 
size measure

𝐼𝐼2 =
𝑄𝑄 − 𝑆𝑆 + 1

𝑄𝑄

 Tells us what proportion of the observed variance in effect sizes is 
due to true differences in effect sizes, rather than sampling error

 𝐼𝐼2 ranges from 0 to 1, with larger values indicating more 
heterogeneity



 There are different ways of assessing the effect of outliers, 
but the main issue relates to what effect each study has on 
the combined effect size

 The easiest way to observe the effect of outliers is through 
“leave-one-out” analyses
◦ Cook’s distance
 A measure of the influence of individual cases on the combined effect
 Popular cutoff is 4/(Number of Studies)

◦ Plot the combined effect, as a function of which study is left out



Individual Studies go on the 
X-axis, here studies 1-10

Combined 
Effect Size



 When there is publication bias (e.g., studies with statistically 
significant effects getting published), studies with small 
sample sizes tend to have large effects
◦ A large effect size is needed for an effect based on a small N to be 

statistically significant
 If we plot effect sizes against sample size/standard error, 

publication bias would show up in terms of “asymmetry”
◦ Small N studies would all tend to have large effects

 This plot is called a funnel plot





 Focuses on effect sizes, not statistical significance

 Combines multiple studies for a more precise estimate 
of the effect size

 Provides a rationale for small-N research
◦ I.e., the results will be combined with other studies for a more 

precise estimate of the effect size
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